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PREFACE

This report describes in detail innovative analytical research aimed at demonstrating

the remarkable potential of an actively controlled partial span flap, located on the trailing

edge of the blade, for vibration reduction in helicopter rotors in forward flight.

The research described in this report was carried out in the Mechanical, Aerospace and

Nuclear Engineering Department at UCLA, and it was funded jointly by NASA Grants NAG

2-477 and NASA NGT-50444 with Dr. S. Jacklin, from the Rotorcraft Aeromechanics Branch

at NASA Ames, as the grant monitor. The authors express their appreciation to the grant

monitor for his useful comments and suggestions.

The principal investigator for this sponsored research activity was Professor Peretz P.

Friedmann. This constitutes essentially the first author's Ph.D. dissertation; however, cer-

tain changes were made to the dissertation, so as to improve it, before turning it into this

report.
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SUMMARY

This report describes an analytical study of vibration reduction in a four bladed heli-

copter rotor using individual blade control (18C) implemented through an actively con-
trolled, partial span, trailing edge flap located on the blade. Two different blade models

are used in the study: (a) an offset-hinged spring restrained blade model with fully coupled
flap-lag-torsional dynamics, and (b) a completely flexible elastic blade model using three
flap, two lead-lag and two torsional rotating modes. For both blade models the vibration
reduction with the actively controlled flap is compared with the vibration reduction

produced by conventional IBC, in which the entire blade undergoes cyclic pitch change.
For both cases a deterministic controller is implemented to reduce the 4/rev hub loads.
For all cases considered it is found that the actively controlled flap produced vibration re-
duction comparable with that obtained with conventional 18C, however the power require-
ments are between 10-30% of those needed for conventional IBC. The control studies

performed using the flexible blade model and the offset-hinged spring restrained blade
model are compared. It is found that despite large increases in vibration levels duetothe

more realistic blade model, vibration reduction can still be accomplished without excessive
power expenditures or control angle inputs. A careful parametric study is conducted in
which the blade torsional frequency, spanwise location of the control flap, and hinge mo-
ment correction factor are varied. The results clearly demonstrate lhe feasibility of lhis
new approach to vibration reduction. There is also indication that this approach, in which
a conventional swashplate is used in conjunction with the actively controlled flap such that
the vibration reduction device is completely decoupled from the primary flight control sys-
tem used for trim, has potentially significant advantages over conventional IBC. Finally,
time domain simulation of the helicopter response to control is performed, validating the
frequency domain based control algorithms that have been implemented to reduce vi-
brations.
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Chapter I

INTRODUCTION AND OBJECTIVES OF THIS STUDY

1.1 INTRODUCTION AND BACKGROUND

Vibrations in helicopters, which arise from such sources as the rotor system, the tail

rotor, the engine and the transmission, lead to fatigue damage of the structural compo-

nents, human discomfort, difficulty in reading instruments and the reduced effectiveness

of weapon systems. A comprehensive review on the sources of vibration is presented in

Refs. 29 and 41. A major goal of current helicopter research is thus to reduce the vibration

levels experienced by crew, passengers and equipment during flight.

Current research has been driven by both commercial and military requirements.

Commercial passenger acceptance would greatly benefit from the perception of the heli-

copter as having a "jet smooth ride". Furthermore, reduction of vibration levels would lead

to the reduction of high maintenance/replacement costs associated with the fatigue dam-

age of structural components. Decreasing vibration levels and allowing higher cruise

speeds would increase the load utilization of helicopters and so decrease relative capital

costs. From a military point of view, increased speed leads to benefits in survivability and

deployment response times. The same maintenance and comfort benefits as for civil op-

erations apply. Reduction in vibration levels in military helicopters allows more accurate

weapons deployment and more effective intelligence gathering.

The traditional approach to vibration reduction in helicopters is based on the use of

passive means such as vibration absorbers or isolation devices. A comprehensive review

of helicopter vibration control presented in Ref. 41 describes many of these methods.

More recent investigations into passive means offer promise of reducing vibrations to

levels below those attainable by vibration absorbers and isolators. One promising ap-

proach involves the design of rotor blades which inherently have low levels of vibration.

This may be done by applying optimum structural design techniques to the aeroelastic



tailoringof the blade. Geometry, mass and stiffness distributions may be optimized to give

minimum vibration levels at the rotor hub or at specified locations in the fuselage. The

fuselage itself may also be tailored to reduce vibrations at various points of interest such

as the pilot seat, passenger compartment or the tail boom. Surveys of the application of

structural optimization to helicopter vibration problems are presented in Refs. 10 and 33.

However, the use of structural optimization may lead to higher manufacturing costs, es-

pecially in the manufacturing of aeroelasticaly tailored rotor blades.

The desire to achieve better vibration reduction has also lead to the use of active con-

trols in reducing helicopter vibrations. Active controllers can be used to reduce vibrations

by eliminating their source, namely the aerodynamic excitation to the rotor. Among the

various approaches which utilize active control for vibration reduction in forward flight, the

approach commonly denoted higher harmonic control (HHC) has emerged as a potential

candidate for possible implementation in production helicopters. This concept relies on the

application of higher harmonic pitch changes (i.e. above the 1/rev pitch changes required

for directional control and vehicle trim) to modify the blade airloads so as to minimize

harmonic blade loading. For a rotor having N b blades, the predominant vibrations are at

Nb/rev. In HHC, these are normally alleviated by applying Nb/rev pitch excitations super-

imposed on the collective (i.e. average), lateral (i.e. 1/rev sine) and longitudinal (i.e. 1/rev

cosine) pitch inputs used to control the helicopter attitude and velocity. This is done by

applying Nb/rev harmonics in the fixed system through an actively controlled conventional

swashplate through the use of hydraulic servo-actuators. Numerous studies have demon-

strated the validity of this approach for producing substantial reduction in vibration levels

in forward flight by analytical sim ulations[_5,7,23,34,36,43, 44,51], wind tunnel

testsl-27,35,49], and flight tests[31,40,56,57].

In an alternative approach, denoted individual blade control (IBC)r26], the time de-

pendent pitch angle of each blade is independently controlled in the rotating reference

frame. This approach removes many ofthe limitations which exist in active control through

a conventional swashplate, but a control system more complex than the conventional

swashplate may be requiredl-20,21]. Recent wind tunnel and flight tests illustrate the



considerablemechanicalcomplexityassociatedwith the implementationof this

approach[22,42].It is worthwhilementioningthat bothHHCandconventionalIBCintro-

ducethe controlfor vibrationreductionthroughthe primaryflightcontrolsystemof the

helicopterandthereforethepresenceofsuchanactivevibrationcontroldeviceintroduces

someconstraintson thesystemfromanairworthinesspointofview.

Thedesireto decreasemechanicalcomplexityandweight,andminimizemaintenance

costs,hasleadto thedevelopmentofhingelessandbearinglessrotorhubs. In hingeless

rotorsthemechanicalflapandlead-laghingespresentinarticulatedbladesare replaced

bya flexiblecantileveredblade,wherethebladeflexibilityprovidesfor virtualhinges. In

suchbladesthemechanicalpitchbearingis retained.Bearinglessrotorbladesare similar

to hingeless blades except that the pitch bearing is eliminated and the pitch input is intro-

duced through a torsionally flexible structural element. Typical articulated, hingeless and

bearingless rotor configurations are shown in Fig. 1. The mechanical simplicity and weight

savings in hingeless and bearingless rotors is generally accompanied by increases in vi-

bratory levels; thus vibration reduction in such rotors becomes an even more important

issue than for articulated rotor configurations.

Recently, comparative studies of vibration reduction in forward flight using HHC were

carried out for equivalent articulated and hingeless rotorconfigurations[43,44]. For both

configurations substantial vibration reduction was achieved with HHC blade pitch angles

under three degrees. However, a comparison of power requirements revealed that the

power required to implement HHC on hingeless rotor blades is significantly higher than for

the equivalent articulated rotor blades. These higher power requirements appear to be

associated with the need to drive harmonically the fairly large and coupled structural dy-

namic system represented by the hingeless blade.

This provided the motivation for exploring an alternative concept where the modification

of the aerodynamic loads on the blade, for vibration reduction in forward flight, is accom-

plished through the active control of an aerodynamic surface located on the blade, similar

to the partial span trailing edge flap shown in Figs. 2 and 3. It was postulated that such a

device would produce substantial reduction in power requirements when compared with



HHC or conventional IBC, which require the introduction of cyclic pitch changes for the

whole blade. Furthermore, such an actively controlled flap can be conveniently controlled

by a control loop which is separate from the primary control system; thus it will have no

influence on airworthiness and it will enable one to retain the conventional swashplate for

flight control purposes. It should also be mentioned that this concept is not entirely new;

over twenty years ago researchers at Kamanr28] used a servo flap on a controllable twist

rotor (CTR) configuration to produce an external pitching moment to alter the elastic twist

distribution of the blade. By cyclically varying the blade twist, they were able to achieve

a 30% decrease in blade bending amplitudes, and a considerable increase in rotor per-

formance, as represented by decreases in solidity and rotor power, and an increase in

range.

The use of an actively controlled nap located on the blade to reduce vibrations in for-

ward flight falls into the category of IBC since each aerodynamic surface is individually

controlled in the rotating system. Such a configuration has the potential for reducing vi-

brations with much less power while retaining the versatility of conventional IBC, but

without requiring the replacement of the conventional swashplate by a more complex me-

chanical system, and without adversely affecting the airworthiness.

The review of the literature clearly indicates that the use of an actively controlled, par-

tial span, trailing edge flap to reduce helicopter vibrations has not been studied previously.

Therefore, the first portion of this study represents a feasibility study of the proposed con-

cept, while the second part deals with issues concerning the practical implementation of

the new approach to vibration reduction.

It is expected that this research will have a significant influence on the field of vibration

reduction in rotorcraft.



1.2 OBJECTIVES OF THE RESEARCH

The first objective of this study is the development of an aeroelastic analysis for the

purposes of studying individual blade control (IBC) as implemented through an actively

controlled trailing edge flap located on the blade. After the analysis had been developed,

the ultimate goals of this research were addressed. These goals are described below.

Initially, a simple offset-hinged spring restrained rigid blade model is used to study the

feasibility of this novel approach for reducing vibrations. The objectives of this first stage

of the research are:

1. Study of the relative effectiveness of IBC when implemented through an active

control surface to achieve vibration reduction in forward flight and its comparison

with conventional IBC.

2. Compare the power required to implement the control for these two alternative

approaches.

3. Examine several control algorithms and determine their effectiveness for reducing

vibrations in steady forward flight.

4. Determine the influence of the blade torsional flexibility on the vibration reduction

effectiveness and power requirements of the various control approaches.

Subsequently. after firmly establishing the feasibility and potential of the actively con-

trolled flap, a more detailed study is carried out which focuses on the practical implemen-

tation of this new approach to reducing vibrations. The objectives of this second stage of

the research are:

1. Implementation of the actively controlled partial span flap with a fully elastic, ge-

ometrically nonlinear, blade model in which the dynamics of the blade are repres-

ented by two torsional, two chordwise bending and three flapwise bending modes.

2. Examination of the importance of appropriately modeling the dynamic behavior of

the blade by comparing results between the two different blade models.

3. Introduction of compressibility effects and hinge moment correction, which ac-

counts approximately for the gap of the trailing edge flap, so that the aerodynamic

loads on the blade and control flap are represented in a more realistic manner.



4. Trendstudiesof theeffectonthevibrationreductionpotentialof theactivelycon-

trolledtrailingedgeflapwhenthefollowingparametersarechanged:(a)spanwise

locationandsizeofthecontrolflap;(b)torsionalstiffnessof thebladeand(c)the

aerodynamichingemomentcorrectionfactor.

In the finalstageof thisstudy,theresultsobtainedin the frequencydomainarevali-

datedin the time domainby directnumericalintegrationof the nonlinearequationsof

motion.Thespecificobjectivesofthis laststageare:

1. Validationofthecoupledtrimandaeroelasticresponsesolutionobtainedusingthe

harmonicbalancetechnique.

2. Validationoftheoptimalcontrolsolutionobtainedin thefrequencydomain.

It shouldbeemphasizedthatthis is thefirst studywhichcontainsadetailedtreatment

of anactivelycontrolledflapforvibrationreductioninhelicopterrotors.



Chapter II

MODELING ASSUMPTIONS AND COORDINATE SYSTEMS

The modeling assumptions which serve as the starting point in the development of the

aeroelastic analysis are summarized in this chapter. The orders of magnitude which are

assigned, based on experience, to the various parameters appearing in the problem for-

mulation are listed. Finally, the various coordinate systems, and related coordinate tran-

sformations, used to formulate the equations of motion are defined.

2.1 MODELING ASSUMPTIONS

(1) The hingeless blade is cantilevered at the hub with an offset e from the axis of ro-

tation, as shown in Fig. 7.

(2) The blade feathering axis coincides with the elastic axis of the blade and is preconed

by the angle [_p, which is depicted in Fig. 7. The blade has no torque offset, sweep or

droop.

(3) The undeformed blade is straight with a general pretwist distribution 0pt(X ) built in

about the elastic axis of the blade.

(4) The blade cross-section is assumed to be symmetrical with respect to its major

principal axes in the formulation of the inertial loads but the effect of camber is accounted

for in an approximate manner when formulating the aerodynamic loads. The blade cross-

section has four distinct points: the elastic center, the aerodynamic center, the mass

center, and the tension center (area centroid), as shown in Fig. 10.

(5) The blade chord c b, mass per unit length m b , and principal cross-sectional inertias

[MB 2 and IMB3, are allowed to vary along the span of the blade.

(6) The blade has an aerodynamic surface, modeled as a partial span trailing edge flap

(as shown in Figs. 2 and 3), wilhitscentroidadistancex c from the blade root. Theconlrol

flap has a chord length ccs and a span Lcs.



(7) The leading edge of the control surface is attached to the trailing edge of the blade

by a series of hinges located at a finite number of discrete points along the control surface

span. The axis of each hinge constrains the control flap cross-section to rotate only in the

plane of the blade cross-section.

(8) At least one hinge is restrained in torsion about its axis by a spring representing the

stiffness of the control system. The control flap actuator deflects the flap by the angle

(positive down) relative to the bladechordline. This angle represents the control input for

the purposes of vibration reduction.

(9) The control surface cross-section is assumed to be symmetrical with respect to its

major principal axes and to have the same airfoil section as the blade. The control flap is

assumed to have the same pretwist distribution as the blade.

(10) The control flap chord Ccs, mass per unit length m c , and principal cross-sectional

inertias IMC 2 and IMC 3, are allowed to vary along its span.

(11) The blade is allowed to have fully coupled flap, lead-lag and torsional dynamics,

undergoing moderate deflections and finite rotations. The blade is treated asinextensible.

(12) Two-dimensional quasisteady Greenberg theory, modified to include the effects of

an aerodynamic surface, is used to obtain the distributed aerodynamic loads. The aero-

dynamic force and moment due to the control flap are scaled by C t_< 1, an empirical cor-

rection factor accounting for the presence of a control surface gap, which is not modeled

in this study.

(13) Reverse flow is accounted for by setting the lift and moment to zero inside the re-

verse flow region, and by reversing the sign on the drag term.

(14) Compressibility effects are either neglected, or accounted for in an approximate

manner using the PrandtI-Glauert correction factor. Dynamic stall and tip loss effects are

neglected.

(15) Uniform inflow is assumed for convenience.

(16) The structural damping in the blade is assumed to be of a viscous type.

(17) The rotor shaft is assumed to be rigid and the rotor speed constant.



(18) Four identical blades are combined to represent a four-bladed, hingeless, fixed-hub

rotor configuration in steady, level flight.

The various modeling assumptions listed above are used in the various stages of the

problem formulation. Additional modeling assumptions, specific to a particular blade

model, are discussed in Chapter 4 for the offset-hinged spring restrained blade model, and

in Chapter 5 for the fully elastic blade model.

2.2 EXPLICIT FORMULATION USING A SYMBOLIC COMPUTING FACILITY

There are two distinct approaches commonly used to formulate the equations of motion

of a helicopter rotor blade. The first approach is usually denoted as the explicit approach

because it leads to a set of detailed aeroelastic equations of motion in which all of the

terms (i.e. inertial, aerodynamic and structural) appear as explicit functions of the blade

degrees of freedom. The second approach is usually denoted as the implicit approach. In

this approach detailed expressions for the aeroelastic equations of motion are avoided.

Instead the aerodynamic, inertial and structural loads are generated in matrix form inside

the computer. When this approach is used the boundaries between the formulation phase

and the solution phase become blurred.

Explicit formulations have some advantages over implicit formulations. Explicit formu-

lations enable one to write out the equalions of motion in detail. This allows one to inspect

the equations and identify the various terms from a physical point of view, which facilitates

the understanding of the equations. Furthermore, explicit equations derived by various

researches can be compared, and any differences can be identified, clarified and under-

stood. Thus a given formulation can be validated without having to resort to numerical

computations of the blade response and stability.

Computationally, the numerical implementation of blade stability and response calcu-

lations based on explicit formulations can be more efficient than implicit formulations, re-

quiring less computer time. This is due to the fact that in explicit formulations muchofthe

algebra is carried out prior to any numerical computations. In addition, explicit ex-



pressions for the stability derivatives are available. Conversely, implicit formulalions re-

quire the numerical approximation of the stability derivatives by the computer.

Furthermore, the implicit approach frequently mandates iterative solutions.

Naturally, explicit formulations also have some disadvantages. The task of formulating

explicit equations can be algebraically formidable and involve a large number of terms.

For this reason explicit formulations generally require employing an ordering scheme to

systematically neglect higher order terms in order to keep the equations to a manageable

size[Ill. Another disadvantage of explicit formulations is that a small change in the

aeroelastic model might require the complete rederivation of the explicit equations. In an

implicit formulation the loads are left in general form and are combined numerically, so the

model may be changed without requiring substantial changes in the problem formulation.

Fortunately, substantial increases in computer power during the last decade, as re-

presented by high computational speeds and the availability of large core memory at low

cost, have facilitated the relegation of tedious algebraic tasks to the computer. Many

symbolic manipulation programs exist which can be used to derive the equations of motion

of the blade in explicit form. These equations can then be converted into FORTRAN code

for inclusion into a computer analysis program. Since the algebraic tasks are relegated

to a computer, it is fairly easy to retain as many terms as desired. Furthermore, the

equations can easily be rederived by the computer to reflect any changes in the aeroelastic

model.

In this study, explicit expressions for the distributed loads on the blade are derived us-

ing a special purpose symbolic computing facility consisting of a Symbolics 3650 dedicated

LISP machine running the commercially available symbolic manipulation software package

MACSYMA. The Symbolics machine is networked with a SUN 3/280 server on which the

numerical computations are performed. The mathematical expressions generated by

MACSYMA are ultimately expressed in a format suitable for their incorporation into the

FORTRAN computer program executed on the SUN machine. The Symbolics/Sun combi-

nation, first used in Ref. 38 to formulate explicit helicopter rotor/flexible fuselage equations

of motion, represents a powerful tool for deriving helicopter equations of motion.
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The description of the application of MACSYMA, and its implementation on a Symbolics

3650 machine, to derive the equations of motion used in this study is presented in Appendix

B. The symbolic manipulation procedure used in this study is very similar to the method-

ology used in Ref. 38. All equations and lengthy derivations presented in this study have

been derived using the approach described in Appendix B.

At the time the explicit expressions were formulated in this study the Symbolics/Sun

combination was required. This represented alimitation because such combinations were

not readily or easily available. However, since then, versions of MACSYMA have become

commercially available for Sun workstations and IBM PCs, thus allowing the symbolic

manipulations and numerical computations to be performed on a single machine. Fur-

thermore, the continuing trend toward faster computers with larger core memories has

lead to substantial decreases in execution times of MACSYMA. For example, MACSYMA

installed on a Sparcstation 10/41 runs five times faster than the speeds achieved on the

special purpose dedicated symbolics machine.

2.3 ORDERING SCHEME

In the derivation of the equations of motion for an isolated blade a large number of

higher order nonlinear terms must be considered. These terms arise due to the assump-

tion of moderate blade deflections which introduces many geometric nonlinear terms in the

expressions for the aerodynamic, inertial and structural forces and moments on the blade.

These nonlinear terms must be retained for an accurate stability analysis. But the number

of terms in the equations of motion of the blade can become too large if all of the nonlinear

terms are retained.

Previous researchl-6,11,38] has demonstrated that the equations of motion may be kept

to a manageable size while maintaining accuracy if an ordering scheme is used to sys-

tematically neglect the higher order terms. An ordering scheme consists of judiciously

assigning orders of of magnitude to the various terms encountered in the equations of

motion and then neglecting all terms of an order higher than some preselected order of

11



magnitude.The highest order of magnitude retained in the expressions determines the

accuracy of the equations.

In this study the basis of the ordering scheme is a small dimensionless parameter

which represents typical blade slopes due to elastic deformation. For helicopter blades

is in the range

0.1< c<0.2

The ordering scheme used in this study is based on the assumption that

1 + O(_ 2) ~ 1 (2.1)

i.e., terms of the order of O(s 2) may be neglected in comparison with unity. This ordering

scheme has been demonstrated[38,45,50,53] to yield equations of manageable size with

sufficient numerical accuracy for stability and vibratory hub load calculations.

The majority of the parameters appearing in the equations of motion represent dimen-

sional quantities; thus before orders of magnitude can be assigned, the various parameters

must first be expressed in nondimensional form. This is accomplished using the following

set of dimensional characteristic parameters:

[length] = R- rotor radius

[mass] = M b - mass of one rotor blade

1
[time] = _

-- - inverse of the rotor speed

The orders of magnitude assigned to the parameters appearing in the equations of

motion are given next. The meaning of each of these parameters is defined in the list of

symbols.

x Lb mb PA

O(1): R' R ' (Mb/R)' (Mb/R3) ' I_, _, cos_, sin_, a o,
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_2 R ' MbR3_}2

0 (e712)"
IMC2 IMC3

MbR' MbR

The orders of magnitude assigned Io the various parameters listed above are consistent

with Refs. 38, 45, 50 and 53.

The systematic application of this ordering scheme in the derivation procedure yields

a set of explicit nonlinear equations of motion of manageable size, and sufficient accuracy.

The application of the ordering scheme in formulating the equations of motion using the

symbolic manipulation program MACSYMA is described in detail in Appendix B. Note that

the above ordering scheme is used with a certain degree of flexibility so as to enable the

retention of certain higher order terms which may be important but appear negligible in

light of the ordering scheme.
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2.4 COORDINATE SYSTEMS

Before deriving the differential equations of motion of the isolated hingeless rotor blade,

it is necessary to define the various coordinate systems used to define the position, ve-

locity and acceleration of arbitrary points on the blade and control flap cross-section. All

coordinate systems are rectangular, and are referenced by a number or letter. The "i"

coordinate system is defined by the set of mutually orthogonal unit vectors denoted by

A A, ,,%

ex_, ey i and ezi, which lie along the x,, y= and z, axes, respectively.

The following coordinate systems are needed to formulate the equations of motion:

(1) The "0" system is an inertial reference frame with its origin at the hub center O H.

The "0" system is oriented such that the gravitational vector is oriented along the negative

z0 axis (see Fig 5).

(2) The "1" system is an inertial reference frame also with its origin located at O H,

However, the "1" system is pitched forward from the "0" system by the angle '_R such that

the positive z 1 axis points upward along the rotor shaft (see Fig. 5). The angle:z Risthetrim

rotor angle of attack. The "1" system represents the nonrotating or "fixed" system.

(3) The "2" system also has its origin at the hub center O H but rotates with the blade

with an angular velocity _2 about the z 1 axis, which is coincident with the z2 axis (see Fig.

6). The "2" system represents the rotating reference.

(4) The "3" system also rotates with the blade but has its origin at the blade root, located

a distance e from the hub along the x 2 axis. Furthermore, the "3" system is preconed by

the angle/_p clockwise about Y2 axis such that the x3 axis is oriented along the undeformed

elastic axis of the blade (see Fig. 7). The "3" system represents the undeformed reference

frame used to define the undeformed position of the blade. The principal axes of the

undeformed blade cross-section are rotated by the pitch angle _qG(x) counter-clockwise

about the x3 axis, as shown in Fig. 9.

(5) The "S" system also has its origin at the blade root. rotates with the blade, and is

oriented such that the x s axis and the x3 axis are coincident. However, the "S" system is

rotated by the angle RCOGr about the xs axis. The "S" system is used to define the orien-

tation of torsional root springs used in the offset-hinged spring restrained blade model (see
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Fig.2). TheparameterRcisan elasticcouplingparameterusedto varythecouplingbe-

tweentheflapandlead-lagmotions.Theangle8or= _?G(x = 0)is thegeometricpitchangle

of thebladeat theroot.

(6)The'4" systemis a bladeattachedcoordinatesystem.Beforedeformationthe "3"

system and "4" system are parallel. The "4" system bends and twists with the blade such

that the x4 axis remains tangent to the deformed elastic axis at each point (see Fig. 8).

Furthermore, the principal axes of the deformed blade cross-section are rotated by the

pitch angleL_c;(X )aboutthex 4axis,as shown in Fig. 9. The "4" system represents the de-

formed reference frame used to describe the position of the deformed blade.

(7) The "5" is also a blade attached coordinate system. The "5" system represents the

"4" system with the torsional deformation removed (see Fig. 9) such that the principal axes

of the deformed blade cross-section are rotated by the angle _)G+ _5, where _ is the elastic

twist. This system is particularly convenient for deriving the distributed aerodynamic loads

on the blade since the elastic pitching motion of the blade is explicitly represented in the

"5'" system. This is described in greater detail in the derivation of the aerodynamic loads

in Chapter 3.

(8) The "C" system has its origin at the hinge point of the control flap, located a distance

X H behind the elastic axis. The "C" system rotates with control flap deflection 6 such that

the xC axis remains parallel to the x4 axis. and the Yc and zc axes remain aligned with the

principal axes of the control flap cross-section (see Fig. 11).

2.5 COORDINATE TRANSFORMATIONS

The coordinate transformations between the various coordinate systems listed above

needed in the formulation of the equations of motion are defined in this section.

"0'____'system to the "1" system

The transformation matrix from the "0" to the "1" coordinate system is given by:
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A A

lexo_

_eyl /_ = 1 0 /_eyot

/^/ L- sin cxR 0 cos 0OR_!/ ^
LezlJ' k.ez0J

(2.2)

where :(R is the trim rotor angle of attack.

The inverse transformation is given by:

^ A

/^__'ex°'_ [ . -I r exl")

cos_R 0 --slnc_R/}^
_ey0 /_ : 0 1 0 /_ey_F

sin0_ R 0 cos_rj/^
_,ez0,J k-ezlJ

(2.3)

"1'__'system to the "2" system

The transformation matrix from the "1" to the "2" coordinate system is given by:

A ^

_ey2 ("_x2_ rc°sl'_=L-s; nl/_ cos_Sinl/Jo°l_"_x1110_eyl

_,,ez2J _,,ezl

(2.4)

The inverse transformation is given by:

^ ^

0 (ex2_

_':xl_ i_cos_-sin_ 01,_: t

_,.ezl# kez2J

(2.5)

"2"____'system to the "3" system

The transformation matrix from the "2" system to the "3" system is given by:

^ ^

Lez3J k-ez2J

(2.6)

It has been assumed that the precone angle ,_p is a small angle.

The inverse of the transformation represented by Eq. (2.6) is given by:
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A A

I !lfix t0 - p
= 1 y3

_.ez2) k.ez3/

"3'__I system to the "S" system

The coordinate transformation from the "3" to the "S" system is given by

,'k A

I:xS"_ 11 0 0 7{ "ex3")
_)eys_ = 0 C°S(RcOGr)sin(RcOGr)/_e, 3_"
k.ezs, -- sin(Rc_Gr) Cos(RcOGr)J t,:3_

The inverse transformation is given by:

fex, 0
ey3 (" : 0 CoS(Rc_IGr)sin(RcSGr)

k.ez3)

"3" system to the "4" s_stem

A

0 7 _exs'_

- sin(Rc0c;r)/<e, skz

c°s Rc°o 'J

(2.7)

(2.8)

(2.9)

The "3" system is used to describe the orientation of the cross-section of the

undeformed blade located a distance x along the elastic axis, while the "4" system is used

to describe the orientation of the same cross-section after the blade's deformation, con-

sisting of blade bending in two mutually perpendicular planes and twisting about the elastic

axis. In this study the elastic deformation of the blade is described completely in terms

of the lead-lag deflection v(x), the flap deflection w(x), and the elastic twist _(x). Thus the

transformation from the "3" system to the "4" system due to blade deformation can be de-

scribed bya unique sequence of angular rotations involving: the elastic twist angle _); the

lead-lag blade bending slope V,x; and the flap blade bending slope w, x. The specific se-

quence of the rotations is important; the precise meaning of each of the three angles de-

pends on the order in which they occur. Therefore a particular rotational sequence must

be adopted and maintained in each stage of the formulation. The deformation sequence

used in this study is flap-lag-torsion. The rotation of the blade cross-section due to blade

bending and elastic twist is therefore described by: 1) a flap rotation by the angle w, x
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clockwiseabouttheY3axis; 2)a lead-lagrotationbytheanglev,×counter-clockwiseabout

thez3axiswhichhasundergonea rotationbytheangleW,x;andlastly3)a torsionalrota-

tionbythetwistangle_ counter-clockwiseaboutthex4axis.

Thetransformationmatrixassociatedwitha rotationby the slope angle w, x counter-

clockwise about the Y3 axis can be expressed as[46]

[, 0 x][Tw,,] = 0 1 (2.10)
-- w,x 0

when higher order terms are neglected.

The transformation matrix associated with a rotation by the slope angle v, x counter-

clockwise about the z3 axis can be expressed as[46]

I 1 v, x il__FTvJ = -v,× 1
0 0

(2.11)

when higher order terms are neglected.

It should be noted that the small angle assumption has been used in the definition of

the transformations associated with the slopes v,x and w, x. i.e.

cos v,x _ 1 + 0(_;2) cos w, x _ 1 + 0(_ 2)

sin v, x _ v, x + 0(_ 3) , sin w, x _ W, x 4- 0(_:3)

The above relations are consistent with the ordering scheme represented by Eq. (2.1).

The transformation matrix associated with a rotation by the angle _ counter-clockwise

about the x4 axis is given by

1 0 0 1
[Toni = 0 cos _ sin q_ (2.12)

0 - sin,5 cos

The small angle assumption is made for q_ only when convenient.

For the deformation sequence flap-lag-torsion, the coordinate transformation from the

"3" system to the "4" system is given by the matrix product
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A A

fex, rex1
k.ez4.J k-ez3Y

where the transformation matrices [T{b], [Tw,x] and [Tv,,] are defined by Eqs.

(2.11)-(2.12). Performing the matrix multiplication yields:

A

, 1 v, x
= -- v, x cos q5 - w, x sin ¢ cos ¢

L V,x sin _ - w, x cos ¢ - sin _b

k_ez4J

A

_le×3_w,xJt:tsin _ - V,xW, x cos q5 y3
cos _ + V,xW, x sin ¢

k.ez3)

The inverse transformation is given by:

, 1

W, x

k.ez3J

- v, x cos q5 - W,x sin ¢
COS

sin _b- V,xW_x

A

-- f:x4"_
v, x sin _ -- w, x cos ¢|

- sin ].)ey,(
cos ¢ + V,xW, x sin _ [-ez4 )

(2.13)

"3" system to the "5" system

The "5" system represenls the

(2.14)

"4" system with the torsional rotation q_ removed,

therefore the transformation matrix from the "3" system to the "5" system is given by:

,%

f°xs)
y5 =

k.ezs)

,%

fT'q
[Tv,,][Tw,,] ley3 (

\ez3J

Carrying out the matrix multiplication yields:

A A

_exs"_[,, 1 v, w, x ] _fex3_
y5 -- V,x lX

k.ez5J k.ez3J

(2.15)

The inverse transformation is given by:

19



A A

ez3) W'x-W,xV,× I JLazs j

(2.16)

"4" system to the "5" system

Since the "5" system represents the "4" system with the torsional angle _ removed, the

coordinate transformation from the "4" system to the "5" system is given by:

A A

/^_ t [ex5 ] '_,.:i! _

, 0 0 7_;l
'key5 = 0 cos_ --sin_

0 sin q_ cos

_,,ezs.)

(2.17)

The inverse transformation is given by:

A A

rex'7[o' o o_e._I:"( - "'°sin _ cos q_

_.ez4 y

(2.18)

"4" system to the "C" system

The transformation from the "4" system to the "C" system is given by:

Eo0100yc( - sin 6 cos 6
_-ezc)

(2.1g)

The inverse transformation is given by:

A A

x4"_ [1 0 0 __ _(exc_
-- -sin 61_eyc_oco,,

sin 6 cos <sJ/^
k.ez4) k.ezc.,/

(220)
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ChapterIII

DISTRIBUTEDLOADSACTINGONTHEBLADE

Thedistributed loads acting on the blade needed to formulate the equations of motion

of the isolated blade are developed in this chapter. The inertial loads are obtained using

D'Alembert's principle, and a modified version of Greenberg'sr18] quasisteady aerodyna-

mic theory, including the effects of a trailing edge flap, is used to calculate the aerodynamic

loading. Gravitational loading is accounted for, and the structural damping is modeled as

being of the viscous type.

To formulate explicit expressions for the distributed loads acting on the blade, the po-

sition, velocity and acceleration of an arbitrary point on the blade or control flap must be

defined in terms of the blade degrees of freedom. Unfortunately, the modeling of the blade

flexibility differs considerably between the two blade models used in this study; the fully

elastic blade model is assumed to be flexible along the entire span, while the spring re-

strained rigid blade model is assumed to have all flexibility concentrated at the blade root.

Thus the kinematic assumptions, and associated blade degrees of freedom, are different

between the two blade models. The need to independently derive two separate sets of

expressions for the blade loads can be avoided, however, by recognizing that the

kinematics of the spring restrained blade model can be considered as a special case of the

kinematics of the fully flexible blade. Therefore, only the distributed loads acting on the

fully elastic blade model are formulated in this chapter. The procedure for obtaining the

distributed loads on the spring restrained blade model from these expressions is described

in detail in Chapter 4.
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3.1 BLADE KINEMATICS

In this study, the Euler-Bernoulli assumption is used, which implies that during bending,

plane cross-sections which are normal to the elastic axis before deformation, remain plane

after deformation, and will be normal to the deformed axis. Furthermore, it is assumed that

strains within the cross-section can be neglected. The Euler-Bernoulli hypothesis is con-

sidered to be a reasonable assumption when applied to a slender flexible beam made of

a linearly elastic, isotropic material, such as the rotor blade modeled in this study. The

assumption is certainly valid in the case of the spring restrained blade model, where the

blade is modeled as rigid outboard of the blade root.

The location of an arbitrary point on the blade cross-section before deformation is de-

scribed by the position vector

A A A Ap = e ex2 + x ex3 + Yo ey3 + Zo ez3

It should be recalled that it is assumed that the blade is initially straight in its undeformed

state. The coordinate pair (Yo, Zo) represent the coordinates of an arbitrary point on the

cross-section of the undeformed blade relative to the elastic axis.

The Euler-Bernoulli hypothesis leads to the following expression for the position vector

of the same point after deformation:

rp ^ ^ ^ ^ ^ ^ (3.1)= e ex2 + (x + u) ex3 + v ey 3 + w ez3 + Yo ey4 + zo ez4

where u, v, and w represent the displacement of a point on the elastic axis of the blade in

A A

the ex3 (axial), ey 3 (lead-lag), and ez3 (flap) directions, respectively. An expression identi-

cal to Eq. (3.1) is used in Refs. 38, 43, and 53 to define the position of an arbitrary point on

the deformed blade cross-section.

The coordinate transformation from the undeformed ("3" system) to the deformed ("4"

system) reference frame has been defined in Chapter 2 by Eq. (2.13) for the deformation

sequence flap-lag-torsion. In the following sections, the position vector defined by Eq

(3.1), together with the coordinate transformation given by Eq. (2.13), are used to formulate

explicit expressions for the distributed inertial, gravitational, damping, and aerodynamic
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loadson the blade.Theevaluationof thedistributedloadsis separatedintotwo compo-

nents:(1)theloadswhichwouldactonthebladecross-sectioniftherewasnocontrolflap;

and(2)the loadsdueto thepresenceof a trailingedgeflap. Thisdecompositionis par-

ticularlyconvenientsincethecontrolflapextendsoveronlya portionof the bladespan,

andfacilitatestheintegrationofthedistributedloadsalongthespanof theblade.

Theexpression"bladeloads"is usedto identifythe loadsactingon the bladecross-

sectionwithouta controlflap;andaredenotedusingthesubscript'b". Similarly,the ex-

pression"controlflaploads"is usedto referthecontributionof thecontrolflap,whichare

denotedbya'c" subscript.Thetwocontributionsareultimatelycombined,andthesum

is referredto asthe"total loads" acting on the blade. The blade loads and the total loads

are evaluated along the elastic axis of the deformed blade. The control flap loads are ini-

tially evaluated at the hinge axis, but are subsequently transferred to the elastic axis before

combining them with the blade loads. The loads are ultimately expressed in the "3" system

in which the equations of motion are formulated.

All of the expressions presented in this chapter, and throughout this study, have been

formulated explicitly using the symbolic manipulation program MACSYMA, executed on a

Symbolics 3650 dedicated LISP machine. A description of MACSYMA and its application

to the formulation of the explicit expressions is presented in Appendix B. The ordering

scheme given by Eq. (2.1) is employed to neglect higher order terms in order to keep the

expressions from becoming too large. However, the ordering scheme is used with a cer-

tain degree of flexibility so as to enable the retention of certain higher order terms which

may be important but appear negligible in light of the ordering scheme.

3.2 INERTIAL LOADS

D'Alembert's principle is used to obtain the inertial force and moment per unit volume

from the absolute acceleration of an arbitrary point on the blade or control flap cross-

section. The loads per unit volume are subsequently integrated over the cross-sectional

area to yield the inertial loads per unit span.
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Fromclassicaldynamics,lhe absoluteaccelerationof a point in a referenceframe

whichis bothtranslatingandrotatingrelativeto an inertialreferenceframeis givenr19]

by

a = R0 + r + 2E,×r + _×r + _x(_oxr) (3.2)

where R0 is the position vector of the origin of the moving reference frame relative to the

inertial reference frame, r is the position vector of an arbitrary point relative to the moving

reference frame, and _ is the angular velocity of the moving reference frame relative to the

inertial reference frame. The time derivatives of R0 are taken in the inertial reference

frame and its second time derivative represents the acceleration of the origin of the moving

reference frame relative to the inertial reference frame. The time derivatives ofr are taken

in the moving reference frame and its first and second time derivatives represent the ve-

locity and acceleration, respectively, of the point in the moving reference frame.

In the present analysis, the "1" system with its origin at the center of the fixed hub re-

presents the inertial reference frame; and the "2" system which is also centered at the hub,

but rotating with the blade about the z 1 axis (as shown in Fig. 6), represents the moving

reference frame. Since the origins of the "1" and the "2" systems are coincident, there is

no translational motion of the "2" system relative to the "1" system; consequently

= = = 5 (3.3)

The angular velocity in Eq. (3.2) can be identified as the angular velocity of the "2" system

about the z1 axis given by

,, A (3.4)_, = _)ezl = ()ez2

where _ is the rotational velocity of the rotor shaft. It is assumed that the rotor speed is

constant and the rotor shaft is rigid; therefore
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Definingrp as the position vector of an arbitrary point in the rotating frame ("2" system),

and substituting Eqs. (3.3)-(3.5) into Eq. (3.2), yields the following expression for the abso-

lute acceleration of the point:

ap = rp + 2_z2xrp + _ez2X(_ez2X rp)

Expressingrp in the "2" system as

_p A A A= rpx 2 ex2 + rpy2 ey2 + rpz2 ez2

(3.6)

then substituting it into Eq. (3.6), carrying out the cross-products, and collecting the various

terms into x, y and z components, yields:

A A A

ap : apx 2 ex2 + apy 2 ey 2 4- apz 2 ez2

where

apx2 = rpx2 - 2_)kpy2 - _)2rpx2 (3.7a)

apy 2 = l_py2 + 2,Qrpx 2 - Q2rpy 2 (3.7b)

apz2 --'- rpz2 (3.7c)

where the time derivatives Ofrp are taken in the "2" system.

Equations (3.7) are used in the following two sections to formulate the distributed

inertial loads acting on the blade and control surface cross-sections using D'Alembert's

principle.
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3.2.1 Inertial Loads on the Blade

The derivation of the inertial loads acting on the blade presented below is very similar

to those of Refs. 38, 45, and 47. The position vector o[ an arbitrary point on the cross-

section of the deformed blade can be defined using Eq. (3.1) as:

A A A. A A A

r b e ex2 + (x + + v 4- Y0b ey4 Z0b ez4= u) ex3 ey 3 + w ez3 + (3.8)

where the subscript "'b" has been used to indicate a point on the blade cross-section. The

coordinate pair (Y0b, Z0b) represents the coordinates of a point on the blade cross-section

relative to the elastic axis, and can be expressed in terms of the principal coordinates of

the blade cross-section (_/b, _b) as follows (see Fig. 9)

Y0b = _lb COS 0 G -- _b sin 0G (3.9a)

Z0b : _b COS 8 G 4- _Tbsin 8 G (3.9b)

where _G represents the total geometric pitch angle of the blade.

To obtain the absolute acceleration it is necessary to take the time derivatives ofr b in

the "2" system. This is facilitated by expressing r b entirely in the "2" system:

A A, A

rb = rbx 2 ex2 4- rby 2 ey 2 4- rbz 2 ez2

Transforming the unit vectors in Eq. (3.8) to the "2" system using the coordinate transf-

ormations defined Chapter 2, and collecting the x, y and z components yields:

rbx 2 _- (x 4- u 4- e)-- wtf] p -- YobV,x -- _ob(W,x 4- ,_p) (3.10a)

rby 2 = V 4- Yob (3.10b)

rbz 2 = w + (x + u)/_p -- _ob(W,x + ,Bp)v, x + 70b (3.10C)

where, for convenience, the following quantities have been defined:

YoD = YOb COS q_ -- zOb sin _ (3.11a)

70b = Yob sinq_ + z0bcosq_ (3.11b)
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The pair (FOb, _0b) can be interpreted as the coordinate pair (Y0b, Z0b) expressed in the "5"

coordinate system, i.e.

A A A A

Y0b ey4 + Z0b ez4 = FOb ey5 + _0b ez5 (3.12)

Using Eqs. (3.9) and (3.11), the pair (Y'0b, E0b) can be expressed in terms of the principal

coordinates of the blade cross-section

FOb = fib COS(E}G + q_)-- (_b sin(/}G + 4) (3.13a)

_0b = (_b COS(_IG + (_) + Y/b sin(_G + _) (3.13b)

The first time derivative ofr b in the "2" system can be expressed as:

where

• A A . A

Tb rbx2 ex2 + I'by2 ey2 + rbz2 ez2

i'bx2 = 0 - _v/_p- Yob[_',x+ (_)G+ SXW,x+/]p)]

+ _ob[(_G+ {_)v,x-- W,x] (314a)

(3.14b)

_'t}z2= w + o#p+ _ob[(eG+ _))-- (w,x + #p)_',x-- _v,×V,x]

+ _0b{f)G + _Xw, x + ,Sp)V, x (3.14c)

which were obtained by taking the time derivative of Eqs. (3.10), and using the following

relations:

FOb = - Z0b(0G + _)) (3 15a)

The previous expressions follow directly from Eqs. (3.13).

(3.15b)
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The second time derivative ofr b in the "2" system can be expressed as

Tb .. A A .. A= rbx 2 ex2 + "l;by2 ey2 + rbz 2 ez2

where

'i;'bx2 ---- LI -- _/_p

+ Y0b[(_)O + _)2V,x -- V,x -- 2(_)G + _)W'x -- (_)G + &)(W'x +/_p)]

+ _0b[(_iG + _)2(W,x + /_p)- _',x + 2(_)G + _)'J,x + (_)G + _)V,x] (3.16a)

1:by2 : 9 _ _0b(0G + _)2 _ }0b(_) G + 3) (3.16b)

l_bz2 = W Jr- Ll_p

+ Fob[- (w,_+ #p)_',x- 2W,x_,,_- w,_v,_+ (_)G+ ¢')2(w,×+ #p)V,x

+ (_G+ 6)]

+ Z0b[2(_)G + _Xw,x + ,Bp)_/,x + 2(_)G + _)W,xV,x - (_)G + _)2

+ (_)G + _)(W'x + ,flp)V'x] (3.16C)

which were obtained by taking the time derivative of Eqs. (3.14), and again making use of

Eqs. (3.15).

The absolute acceleration of an arbitrary point on the cross-section of the deformed

blade can be expressed in the "2" system as

,% A A

a b = abx 2 ex2 + aby2 ey2 + abz2 ez2

Substituting Eqs. (3.10), (3.14) and (3.16) into Eqs. (3.7) yields:

abx 2 = iJ -- W/3p -- 2£_9 -- £_2[(X + e + u)- Wfip]
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+ Y0b[ -- (W,x +/_p)V,x -- 2VV,x_/,x -- W,xV,x + (_G + _)2(W,x +/_p)V,x

+ (_G+ _) + _2v,×]

+ E0b[(eG + _)2(W, x + ,Sp) -- W,x + 2(_)G + _))V,x + (_G + (_)V,x

+ 2_(_)G+ $) + 92(W,x+ #r_)] (3.17a)

aby 2 = _'+ 2_(u-W_p)-_2v

_ _0b[(e G + _)2 + 2_/,x + 2(_(8G + _))(W, x + /_p) + 92]

-- E0b[(_G + _) -- 2Q(_) G + _)V, x + 2QW,x] (3.17b)

abz 2 = W + U_p

+ Yob[- (w,x+ #p)_',x- 2_v,xv,×- _',×V,x+ (_)G+ _)2(w,×+ #r))V,x

+ (/_G+ $)]

+ 20b[2(/_G + (bXW,x + _p)v,x + 2(_)G + _)W,xV,x -- (_G + _)2

+ (eG+ $ ×w,×+ #p)v,,] (3.17c)

The distributed inertial loads on the blade are formulated using D'Alembert's principle;

the inertial force and moment per unit volume acting on the blade cross-seclion are inte-

grated over the blade cross-section to obtained the inertial force and moment per unit span

acting on the blade. However, before proceeding it is convenient to define certain cross-

sectional integrals involving the principal coordinates of the blade cross-section. These

integrals are defined as follows:

_,, Pb_lb = mbXlbdA

Ah

(3.18a)
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fA pb(b dA = 0 (3,18b)
b

fA 2 (3.18c)Pb_tbdA = IMB3

b

Pb_2dA : IMB 2 (3.18d)
b

p0,,0 0dA=0 (318
b

where Eqs. (3.18b) and (3.18e) result from the assumption of a symmetric blade cross-

section. The quantity Xtb represents the offset of the blade cross-sectional center of mass

from the elastic axis and the pair IMB 2 and IMB 3 represent the principal mass moments of

inertia of the blade cross-section.

The distributed inertial force acting on the blade is obtained by integrating the inertial

force per unit volume over the blade cross-section:

Plb = -- Pbab dA (3.19)

b

which can be expressed in the "2" system as

A A A

Plb = Plbx2 ex2 4- Plby2 ey2 4- Plbz2 ez2

Evaluating each component of Eq. (3.19) using Eqs. (3.17) yields:

Plbx2 = -- r pbabx2 dA
J,

A b

= mb()2(X + e)+ 2mb,Q_/+ mb,_p(W- WQ2)+ mb(U_"_ 2- [I)

-- 2m0XIb sin(_G + (#)_(_)G + _)) (3.20a)

= --rPbaby 2dAPlby2
'#A b
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= 2mb_W_p+ mb(V[) 2 -- _)-- 2mb£2U

+ mbXib cos(8 G + _)[£_(E_ + 2V,x) + (_)G + _)2 + 2_(i)G + _Xw, x +/_p)]

+ mbX,b sin(0o + _)[(_G + _)+ 2E)-W,x -- 2D(_G + _)V,x] (3.20b)

r
Plbz2 = --| Pbabz2 dA

Ab

= _ mbb_p-- mbw

+ mbXlb COS(_G + _)[V,x(W,x + /_p) + 2W,xV,x + W,xV,x - (#G + _)]

+ mbXlb sin(SG + q))[(_)O + _)2 _ (SG + _)(W,x +/_p)V,x] (3.20c)

The following integral definitions have been used in the integrations over lhe blade cross-

section:

_ PbdA = m b (3.21a)
Ab

_ pbY0bdA = mbXlbCOS(/) G+q_) (3.21b)
Ab

j" Pb zOb = mbXlb sin(0G + q_) (3.21c)dA

Ab

The first integral represents the mass per unit span of the blade and the last two integrals

follow from Eqs. (3.13) and (3.18).

The distributed inertial moment acting on the blade is obtained by integrating the

inertial moment per unit volume over the blade cross-section:

qlb = -- b(Y0bey s + ZObezS) X pbabdA (3.22)

which can be expressed in the "2" system as:
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A A A

qlb = qlbx2 ex2 + qlby2 ey2 -t- qlbz2 ez2

Transforming the unit vectors in Eq. (3.22) to the "2" system using the coordinate transf-

ormations defined in Chapter 2, carrying out the cross-product and collecting the various

x, y and z components yields:

qlbx2 = -- fAbPb{Yob[abz2 + (W,x + _p)V'xaby2] -- _Obaby2} dA

= - J'AbPb{_Ob[abz 2 -- (W, x + /_p)abx2]V,xqlby2

+ _Ob[(W,x + /_p)abz 2 + abx2] } dA

qlbz2 = -- fAbPb[ -- Yob(V'xaby2 + abx2) -- _ob(W'x + _p)aby2] dA

Substituting Eqs. (3.17) into the previous expressions and performing the integrations over

the blade cross-section yields:

qlbx2 = mbXlb COS(_G + _)[( v_'_2 -- vXw,x + _p)V,x - (N - LI,Bp]

+ mbXlb sin(e G + _)[{v - v{_ 2) + 2_;_0 - 2_/#p]

- (lUB2+ luBg{_)G+ _)

+ (IMB 2 -- IMB3) COS(8 G + _) sin(8 G + q_)_[(E_ + 2v,x)

+ 2{1)G + CXw,× +/Gp)]

+ 2lIMB2 COS2(SG + q_)+ IMB3 sin2(SG + _)]()[(_G + _)V,x-- W'x]

+ lIMB2 sin2(eG + ¢) + IMB 3 COS2(_G + _)][2V,xW, x + V,x{N, x

"t- (W, x Jr-#pX__2V,x H- V,x)] (3.23a)
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qlby2= -- mbXlbCOS(0G+ _)[_2X(W,x + tip) + W]V,x

+ mbXib sin(0 G + _)[_2(x + e)-- (_2W_p Jr- _/W,x) + 2_(z + (U_ 2 -- J_)]

- (IMB_+ IMBsX/)G+ _)V,×

+ (IMB2 -- IMB3) COS(0G + _) sin(0G + _)[(V,x _2 -- V,x) -- 2(0G + _)VV,x]

4- lIMB2 COS2(0G 4- _) 4- IMB3 sin2(0G 4- _)-][W,x -- _2(W,x 4- /_p)

- 2(bG+ g_XQ+ V,x)] (3.23b)

qlbz2 = mbXlb COS(0G + _)[ -- _'_2(x + e) -- 29(/+ (JJ -- uE22)

+ (wD2 _ w)/_p+ (_ - v_)2)v,×]

+ mbXlb sin(0G + _Xv - v_:22)(W,x + _p)

- (IMB2+ lua3XbG+ ,_Xw,×+/_p)

+ (IMB2 -- IuB3)COS(OG + 4)sin(0G + q))[W,x -- 2(0G + _)(Q + _/,x)]

-- lIMB2 sin2(0G + q_) + [MB3 COS2(0G 4- (_)][V,x 4- 2(_)G + _)_V,x] (3.23c)

The following integral definitions, in addition to those represented by Eqs. (3.21), have been

used in the integrations over the blade cross-section:

j" Pb y2b dA = IMB 2 sin2(0G 4- 'h) 4- IMB3 COS2(_)G 4- _)
Ab

(3.24a)

f, pb_2b dA = IMB 2 COS2(t)G 4- (h)4- IMB3 sin2(/)G + 4)
A b

(324b)

J" pbY0bZ0 b = (IMB 3-1MB2)COS((_ G+_)sin(0 G+ _))dA

A b

(3.24c)
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TheaboveintegralsfollowfromEqs.(3.13)and(3.18).

Transformingthe distributedinertialforceto the"3" system,in whichtheequationsof

motionareformulated,usingthecoordinatetransformationdefinedin Chapter 2 yields

A A A

Plb = Plbx3 ex3 Jr Plby3 ey3 ÷ Plbz3 ez3

where

Plbx3 = Plbx2 + ,Sp Plbz2 (325a)

Plby3 = Plby2 (3.25b)

Ptbz3 = -- ,/_p Plbx2 + Plbz2 (3.25C)

Similarly, the distributed inertial moment acting on the blade can be expressed in the "3"

system as:

qlb : qlbx3ex3 + qlby3ey3 + qlbz3ez3

where

qlbx3 = qlbx2 + ,_p qlbz2 (3.26a)

qlby3 = qlby2 (326b)

qlbz3 = -- ,Sp qlbx2 + qlbz2 (3.26C)

3.2.2 Inertial Loads on the Control Surface

The distributed inertial force and moment on the control surface is obtained using

D'Alembert's principle in a manner similar to that used in calculating the distributed

inertial loads on the blade. The coordinates of an arbitrary point on the control flap

cross-section, relative to the elastic axis, can be expressed as (see Fig. 9)

Y0 = YH + Y0c

Z0 = Z H + Z0c

(3.27a)

(3.27b)
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where

YH= -- XHCOS8 G (328a)

z H = -- X H sin 8 G (3 28b)

represent the coordinates of the hinge point on the blade cross-section relative to the

elastic axis. The quantityX H represents the offset between the control surface hinge point

and the elastic axis, and is defined as positive behind the elastic axis. The pair(Y0c, z0c)

represents the coordinates of an arbitrary point on the control flap cross-section relative

to the "'C" system, which is parallel to the "4" system but has its origin at the hinge point.

The coordinate pair can be expressed in terms of the principal coordinates of the control

surface cross-section (_/c, _c) as follows (see Fig. 11)

Y0c = _lc cos(0G + 3)-- _c sin(So + &) (329a)

Z0c = _c COS(SG + _) + _lc sin('qG + &) (3.29b)

where 6 is the deflection angle of the control surface relative tothe blade chord. Ilshould

be noted that the origin of the principal coordinates of the control surface 01c, ¢c) is located

at the control surface hinge point.

Substituting Eqs. (3.27) into Eq. (3.1) yields the position vector of an arbitrary point on

the control flap cross-section

'% A A A

rc = e ex2 + (x + u) ex3 + v ey 3 + w ez3

+ (YH + Yoc) ey4 + (ZH + Z0c) ez4 (330)

which can be expressed in the "2" system in the form:

rc =rcx 2 ex2 + rcy 2 ey2 + rcz2 ez2

Transforming the unit vectors in Eq. (3.30) to the "2" system using the coordinate transf-

ormations defined in Chapter 2 and collecting the terms into x, y and z components yields:

rcx 2 = (x + e + u) - Wfip - (YH + Y0c)V,x - (_H + _0¢XW,x 4- _p) (3 31a)
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ryc2= v -t-YH-t-Y0c

rcz2 : (xJr-u)/_p-t-w-- (YH+ YocXW'x-t-,_p)V, x -4- ZH -t- _0c

where for convenience the following quantities have been defined:

YH = YHCOS_--Z Hsin_ = --X H COS(e G+_)

_H = YH sin qb + ZH cOS q_ = -- X H sin(ec + 4)

Y0c = Y0c cos _ - Zoc sin

E0c = Yoc sin q_ + z0c cos

(3.31b)

(3.31c)

(3.32a)

(3.32b)

(3.33a)

(333b)

The pair (Yoc, E0c) can be interpreted as the coordinate pair (Yoc, z0c) expressed in the "5"

system, i.e.

^ ^ ^ - " (3.34)
YOc ey4 + Zoc ez4 = Yoc ey5 -t- Z0c ez5

Making use of Eqs. (3.29), the coordinate pair (Y0c,_oc) can be expressed in terms of the

principal coordinates of the control surface cross-section, i.e.

Yoc = _Ic COS(fiG + _h + 6) -- _c sin(_G + _ + _) (3.35a)

Z0c = _c COS(SG + q_ + 6) + _lc sin(eG + _5 + 6) (3.35b)

The time derivatives ofr c in the rotating reference frame ("2" system) can be obtained

by differentiating Eqs.(3.31) with respect to time. The first time derivativeofr c in the "2"

system can be expressed as:

-- , ^ . A . A

rc = rcx 2 ex2 + roy 2 ey2 -f- rcz 2 ez2

where

r'cx2 ---- U-- W_p

- _o_[(_o+ #' + _×w,_+ #p)+ 'Zx] + _oc[(_G+ _ + _)V,x- _',,,]
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- YH[(I)G + _Xw,x +/_p) + V,xl + ZH[(t)G + _)V,x -- V'V,x] (3.36a)

l'cy2 = _/-- _0c(_G Jr _) 4- _) -- ZH(_G + _) (3.36b)

i'zc 2 = _/+ U#p

+ 70_[(eG+ _'+ 6)- (w,x+ #pV,x- W,#,x]

+ _O_eG+ a + a×W,x+ #p)V,x

+ yH[(_G 4"- _))- (W, x + #p)_/,x -- W,xv,x]

4"- ZH(_G 4"- _Xw, x 4- /_p)V, x (3.36C)

The previous expressions were obtained by taking the time derivative of Eqs. (3.31), and

using the relalions

Y0c = --Z0c(SG+_+6) (337a)

E0c = Y'0c(SG+ _ + 6) (337b)

_H = -- ZH(_)G + _) (3.38a)

_H = YH(_)G 4- (_)

Equations (3.37) follow from Eq. (3.35), and Eqs. (3.38) follow from Eqs. (328).

The second time derivative ofr c in the "2" system can be expressed as:

(338b)

.. A .. A .. A

r C : rex 2 ex2 4- rcy2 ey2 4- rcz 2 ez2

where

rcx2 -- ll- W#p4-
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+ Y0c[ - V,x + (SG + _) + _)2V,x -- 2(_G + _) + _i)W'x

-- (_G Jr-_) + _XW,x --I-,6p)]

+ _o_[2(eo+ ¢ + &)V,x+ (i_G+ ¢ + ;_)V,x-W,x

+ (_G+ _ + $)2(w,_+/_p)]

+ YH[ -- ;_,x + (0G + _))2V,x -- 2(_G + _))_V,x -- (_G + _)Xw,x + _p)]

+ ZH[2(_G + (_)_/,x + (_G + _)V,x -- W,x + (eG + (_)2(w'x + _p)] (3.39a)

_y2 = v - _oJOG+ @+ $)2_ _oJi_G+ ¢ + _)

-- y'H(_G Jr _)2 _ _H(0 G Jr (_) (339b)

l:'cz2 = _/+ [i,_p

+ Yoc[- (W,x+/_p)_,x- 2w,x_',×- W,xV,×+ (eG+ @+ (_)2(W,x+ .SPv.x

+ (/_G+ _ + _)]

+ _0c[2(_)G + _ + _XW,x + #p)_/,x + 2(#G + _ + _)W,xV,x

+ (_o+ & + _Xw,x+ #p)V,x- (eo+ '_ + _)2]

+ YH[ -- (W,x Jr",/_p);¢'x -- 2W'x(/,X -- W'xV'x + (_)G + _))2(W'x +/_p)V,x

+ (_o+ ¢)]

+ _H[2(_G + (_Xw,x + #p)(/,x + 2(_)O + _)W,xV,x + (_G + _)Xw,x + .Sp)V,x

- (0o+ _)2] (3.39c)
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The previous expressions were obtained by taking the time derivative of Eqs. (3.36), and

making use of Eqs. (3.37) and (3.38) once again.

The absolute acceleration of an arbitrary point on the control surface cross-section can

be expressed in the "2" system as:

A A A

aC = acx2 ex2 + acy2 ey2 + acz2 ez2

Substituting Eqs. (3.31), (3.36) and (3.39) into Eqs. (3.7) yields:

acx 2 = u - W,Bp- 2Q(z - _2[(x + e + u)- W,6p]

+ Y0c[ - (W,x +/_p)k2,x - 2W,xV,x - ¢v,xV,x + (80 + _ + &)2(W,x +/_p)V,x

+ (/)G+ $ + S) + _)_V,x]

+ 2ocE(0G + ¢ + _)2(W,x +/_p) - vv,x + 2(_)O + _ + g)'_,x

+ (_)G + _ + &)V.x + 2[;:t(Os + '_ + &) + _)2(W,x +/_p)]

+ YH[ - (W,x+/_p)_,x - 2';V.x':',x- W,xV,×+ (ha + _)2(w,×+/_p)V,x

+ (/)G+ $) + _2V,x]

+ _HE(fG + _)2(w, x + ,Sp)- _b,x + 2(0 G + _)(/,x + (0G + _)V'x

+ 2_(t) o + _) + [Z)2(W,x + /_p)] (3.40a)

acy 2 = ;_4.- 20(u -- W,_p)- _)2v

_ _oc[(i)o + ¢ + g)2 + 2(_9,x + 2[)(_) G + ¢ + ,_)(w,x + ,Bp) + Q2]

- 2Oc[(t)o + _ + _) - 2Q(t) o + _ + &)v, x + 2_W, x]
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_ _H[(SG + (_)2 + 2_Q, x + 2_(_)G + (_XW,x + _p) + _2]

-- _H[(0G + _)- 2_(_) G + _))V, x + 2QVV,x] (3.40b)

acz 2 = _/+ [i,Sp

+ Y0c[ - (W,x + #p)_',x - 2W,x¢,x - w,xV,x + ({)G + _ + _)2(W,x + #p)V,x

+ (/)G+ $ + _)]

+ EOc[2(_G + _ + 3Xw, x + ,Bp)V, x + 2(8 G + (_ + g)VV,xV, x

+ (_G+ $ + SXw,x+ #p)V,x- (eG+ $ + _)2]

- YH[ -- (W,x + ,8p_,x -- 2W,xV,x -- W'xV,x + (SG + _)2(W,x + #p)V,x

+ (_G+ _)]

-- _H[2(SG -'I- _)V,x(W.x -I- #p) Jr- 2(_)G + _)W,xV, x

-I-(_O Jr- _XW,x -I- #p)V, x - (_)O Jr-(_)2] (3.40c)

The absolute acceleration of an arbitrary point on the control surface cross-section is

used to obtain the inertial force and moment per unit volume from D'Alemberrs principle.

These inertial loads per unit volume are subsequently integrated over the control surface

cross-section to obtain the distributed inertial loads acting on the control surface. But be-

fore proceeding it is convenient to define certain cross-sectional integrals of the control

surface principal coordinates. These integrals are defined as follows:

fAPC _Ic dA = - mcXlc (3.41a)
¢
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Pc_cdA = 0 (3.41b)

_, 2Pc _/c dA = IMC 3
Ac

(3.41c)

_ pc_'2dA = (3.41d)IMC2

Ac

_ pc_/c(cdA = 0 (3.41e)
Ac

where Eqs. (3.41b) and (3.41e) result from the assumption of a symmetric control surface

cross-section. The quantity X m is the offset of the mass center of the control surface

cross-section behind the hinge point, and the pair IMC 2 and IMC 3 represent the principal

mass moments of inertia of the control surface cross-section about the hinge axis.

The distributed inertial force is obtained by integrating the inertial force per unit volume

over the control surface cross-section:

Plc= - P c dA
Ac

(3.42)

which can be expressed in the "2" system in the form

Plc= Plcx2 ex2 4- Plcy2 ey2 4- Plcz2 ez2

Carrying out the integration for each component of Eq. (3.42) using Eqs. (3.40) yields:

Plcx2 --
r

dA-- -- / ,°cacx2
,I,Ac

mc_)2(x + e) + 2mcQ_, + mcfip(_/-- w_-) 2) + mc(U_ 2 -- _1)

+ 2mcXlc(2 sin(_qe+ _ + &)(_)O+ _ + 3)

+ 2mcXH_) sin(_ G + _Xt)G + _) (3.43a)
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Plcy2= -- fA '°cacy2 dA
¢

= 2mc_Vv/_ p + mc(V_22- _,)- 2menU

- mcXIc c°s(SG + ¢ + 3)[(_G + (_ + 6) 2 + E2(_ + 2(/,x )

+ 2 (0G+ $ +  Xw,x

- mcXIc sin(SG + ¢ + _)[(_G + (_ + _) + 2_)W,x

-- 2_}(8 G + _) + _)V, x]

_ mcXH COS(SG + ¢)[(bG + ¢)2 + O.(_ + 2(/,x ) + 2g_(t) G + _Xw, x +/_p)]

- mcXH sin(eG + q_)E(SG + _) + 2_)W,x - 2-Q(_G + _)v,x] (3.43b)

r
Plcz2 = -- | Pcacz2 dA

Ac

= -- mcW-- mci_/_ p

+ mcXlc COS(SG + _ + 3)[(_G + ¢ + _) -- (W,x +/_p)V,x -- 2W,x_/,x

- W,xV,x]

_ mcXl c sin(SG + _ + c_)[(/)(:; + _ + _)2 _ (_G + _ + 3)(W,x + /_p)V,x]

+ mcXH COS(gG + _5)[(_)G + _) -- (W,x + /_p)V,x -- 2VV,xV,x -- *,xV,x]

- mcXH sin(f)G + q_)[(_G + _))2 _ (0G + CXW,x +/_p)V,x] (3.43c)

The following integral definilions have been used in the integrations over the control sur-

face cross-section:
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_ Pc dA = (3.44a)m¢
A¢

fAPC Y0c dA = - mcX_ccos(8 G+ @+ 6)
{

(3.44b)

J'APc Z0c dA = -- mcXlc sin(8 G + _ + &) (3.44c)
c

The firsl integral represents the mass per unit span of the control surface and the last two

integrals follow from Eqs. (3.35) and (3.41).

The distributed inertial moment aboul the control surface hinge point is obtained by

integrating the inertial moment per unit volume over the control surface cross-section:

- = r. ^ p_c dA (3.45)q_h - (Y0ceys + _0c _zs) ×
_A c

Transforming the unit vectors in Eq (3.45) to the "2" system using the coordinate transf-

ormations defined in Chapter 2, carrying out the cross-product, and collecting the x, y and

z components yields:

,',, ,'k A

qlh ---- qlhx2 ex2 + qlhy2 ey2 + qlhz2 ez2

where

£
qlhx2 = -- / Pc{Y0c[acz2 + (W'x + flP)V'xacy 2] - Zocacy 2} dA

./JAc

qlhy2 = -- fA Pc{Y0c[acz2 -- (w'x + _p)acx2]V'x
b

+ _0c[(W,x +/_p)acz 2 + acx2] } dA

qlhz2 = -- fA Pc[ -- Y'0¢(V,xacy2 + acx2)- _0cacy2] dA
c
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SubstitutingEqs.(3.40)intothe previousexpressionsandperformingtheintegrationsover

thecontrolsurfacecross-sectionyields:

qlhx2= mcXIcCOS(SG+ _ + 5)[w+ 5/_p-- (v92-- _)(w,x+/_p)V,x]

+ mcXic sin(8 G + _ + _)[(v_ 2 - v) + 2_WW,xp - 290]

- (IMc2+ IMc3X/)G+ $ + S)

+ (IMc 2 -- IMC3) COS(_)G + _ + 5) sin(8 G + _ + 5)E,_[(Q + 2V,x)

+ 2(i_G+ _ + SXW,x+/_p]

+ 2[IMc 2 COS2(_G + q_ + cS)+ IMC 3 sin2(tgG + _ + 5)]Q[ -- W, x

+ (_)G+ $ + 3)V,x]

+ [IMc 2 sin2(_G + _ + 5) + IMC 3 COS2(0G + _ + 5)'J[2(z,xW, x

+ V,xW,x+ (W,x +/_pX_',x + _;_2V,x)]

-- mcXicXH_(_ + 2V,x) COS(0 G + ¢) sin(0 G + _ + 5)

-- mcXlcXH(_) G + _) COS 5

_ mcXlcXH(t) G + _)2 sin 5 (3.46a)

qlhy2 = mcXlc COS(0G + g5 + _)[X_)2(W,x + /_p) + _/]V,x

+ mcX_csin(0 G + ¢ + &)[ - _)2(x + e) + (W,x_b+/?pW_::_2)

+ (b-u_) 2)- 2_)v]

- (IMc_+ IMc3X/)G+ _ + ;_)V,x
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_L (IMC 2 __ IMC3 ) COS(eG + _ + _) sin(0G + (_ + _)[(V,x _2 -- _>,x)

-- 2(_G + _ + _)W,x]

+ [IMc2 COS2(SG + _ + (_)+ IMC3 sin2(SG + (_ + (_)][_/,x

- _2(w,x+ tip)- 2(_ + V,xXbG+ _,+ _)]

-- 2mcXicXH_(_ G + _) sin(0 G + _)) sin(8 G + _ + (S) (3.46b)

qlhz2 ---- mcXlc COS(0G + (_ + _)[ 1_'_2(x+ e) + (u_ 2 -- [J)

+ 2_</+ (V_ 2 -- V)V, x + (W -- W_)2)_p]

+ mcXlc sin(8 G + _5 + _Xw,x + #pXv_ 2 - v)

- (IMc2+ IMc_XOG+ (_+ 3XW.x+ #p)

+ (IMc 2 -- IMC3) COS(_G + _ + cS)sin(_ G + (_ + (_)[_/,x

- 2(_ + _',x)(_)G + _) + 5)]

-- [IMc2 SiR2(0G + _ + _) + IMC3 COS2(0G + _ + _)][V,x

+ 2(_)G + _) + ,_)W.×]

+ 2mcXIcXH_(0 G + (_5)sin(0 G + qS) cos(0 G + q5 + (S) (3.46c)

The following integraldelinilions, in addition tothose represented byEqs (3.44), have been

used in the integrations over the control surface cross-section:

L -2
Pc YOc dA = IMC 2 sin2(0G + _) + 6) + IMC 3 COS2(8G + q_ + 6)

C

(347a)
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.[APcEgcdA= IMC2cos2(eG+q_+3)+IMc3sin2(SG+_4-3)
c

fAPC Y0c Z0c dA = (IMc 3 -- IMC2) COS(8 G 4- ¢ 4- 3) sin(0 G + q_ + 3)
c

(3.47b)

(3.47c)

The above integrals follow from Eqs. (3.35) and (3.41).

The distributed inertial loads acting on the control surface can be transformed from the

"2" system to the "3" system, in which the equations of motion are formulated, using the

appropriate coordinate transformation defined in Chapter 2. The distributed inertial force

acting on the control surface can be expressed in the "3" system as:

where

Plcx3 = Plcx2 + tip Plcz2 (3.48a)

(3.48b)

(3.48c)

A A A

Plc = Plcx3 ex3 + Plcy3 ey3 4- Plcz3 ez3

Plcy3 : Plcy2

Plcz3 : -- tip Plcx2 4- Plcz2

Similarly, the distributed inertial control surface hinge moment can be expressed in the "3"

system as:

A A A

qlh = qlhx3 ex3 4- qlhy3 ey3 4- qlhz3 ez3

where

qlhx3 : qlhx2 4- /_p qlhz2 (3.49a)

qlhy3 : qlhy2 (3.49b)

qlhz3 : -- J_p qlhx2 4- qlhz2 (3.49C)

The distributed inertial moment about the elastic axis of the blade due to the control

surface inertial loads is given by
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= x Plc (3.50)

Transforming the unit vectors in the above expression to the "3" system using the appro-

priate coordinate transform defined in Chapter 2, carrying out the cross-product, and col-

lecting the various terms into x, y and z components yields:

A A A

qlc ---- qlcx3ex3 + qlcy3ey3 +qlcz3ez3

where

qlcx3 = ( - V,x W,xYH + _H)Plcy3 + YH Plcz3 (3.51a)

qlcy3 = ( - V,x W,x YH -F ZH)Plcx3 + (V,x YH + W,x ZH)Plcz3 (3.51b)

qlcz3 = - YH Plcx3 -- (V,x YH + W,x _H)Plcy3 (3.51C)

3.3

and moment per unit volume over the cross-sectional area.

oriented along the negative z0 axis, i.e.

A

-g = -- g ezo

where g is the acceleration due to gravity.

coordinate transformations defined in Chapter 2 yields:

GRAVITATIONAL LOADS

The distributed gravitational loads are obtained by integrating the gravitational force

The gravitational vector is

(3.52)

A

Transforming ezo to the "2" system using the

where

gx2 = -- g sin c(R COS

gy2 = g sin :_R sin

gz2 = --gcos_R

A A A

= gx2 ex2 + gy2 ey2 -t- gz2 ez2

(3.53a)

(3.53b)

(3.53c)
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The gravitational vector defined above is used in the following sections to obtain the dis-

tributed gravitational loads on the blade and control surface.

3.3.1 Gravitational Loads on the Blade

The gravitational loads per unit span acting on the blade are obtained by integrating the

gravitational force and moment per unit volume over the blade cross-section. The deriva-

tion presented below is similar Io those of Refs. 38 and 50. The distributed gravitational

force on the blade is given by:

-PGb = /A Pbg dA (3.54)
b

which can be expressed in the "2" system as:

A A A

-PGb = PGbx2 ex2 4- PGby2 ey2 4- PGbz2 ez2

Evaluating each component of Eq. (3.54) and making use of Eqs. (3.53) yields:

PGbx2 = /A Pb gx2 dA = - mbg sin :zR cos _,
b

(3.55a)

PGby2 = fA Pb gy2 dA = mbg sin ;(R sin
b

(3.55b)

PGbz2 = /A Pb gz2 dA = - mbg COSC(R (3.55C)
b

The gravitational moment per unit span about the elastic axis is obtained by integrating

the gravitational moment per unit volume over the blade cross-section

qCb = _" (FObeys + Z0b ezs) × Pb-g dA (3.56)
*JA b
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Transforming the unit vectors in Eq. (3.56) to the "2" system using the coordinate transf-

ormations defined in Chapter 2, performing the cross-product, and collecting the various

terms into x, y and z components yields:

A A A

qGb = qGbx2 ex2 4- qGby2 ey2 4- qGbz2 ez2

where

£
qGbx2 = I. Pb {FOb [gz2 + (W,x 4- _p)V,x gy2] -- 20b gy2} dA

"/A b

qGby2 = .[, Pb {FOb [gz2 -- (W,x 4- rRp) gx2]V,x 4- _0b [(W,x 4- /_p) gz2 4- gx2]} dA

Ab

= [. Pb[ -- Y0b(V,xgy2 + gx2)-- 70b(W,x 4- /_p) gy2] dAqGbz2

b

Substituting Eqs. (3.53) into the previous expressions and performing the integrations over

the blade cross-section yields:

qGbx2 = -- mbgXlb COS(_G 4- q_)[ COS :_R -- (W,x + _p)V,x sin :(R sin _]

- mbgXlb sin(0 G + ¢) sin :LR sin _ (3.57a)

qGby2 = -- mbgXlb COS(0G + _)[ COS :_R -- (W,x + _p) sin _R cos I_]v, x

-- mbgXlb sin(0 G + ¢)[(w_ x +/?p) cos _R + sin :_R cos ¢] (3.57b)

qGbz2 = - mbgXlb COS(0G + (/_) sin :_R(V,x sin ¢ -- cos _)

- mbgXlb sin(O G + _) sin :zR sin _ (3.57c)

The integral definitions represented by Eqs. (3.21) have been used above.

The distributed gravilational loads acting on the blade can be transformed from the "2"

system to the "3" system, in which the equations of motion are formulated, using the co-

ordinate transformation defined in Chapter 2. The distributed gravitational force acting on

the blade can be expressed in the "3" system as:
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A A A

PGb _- PGbx3 ex3 + PGby3 ey3 + PGbz3 ez3

where

PGbx3 = PGbx2 4- _p PGbz2 (3.58a)

PGby3 = PGby2 (3.58b)

PGbz3 = -- _p PGbx2 + PGbz2 (3.58C)

Similarly, the distributed gravitational moment acting on the blade can be expressed in the

"3" system as:

A A A

qGb = qGbx3 ex3 4- qGby3 ey3 Jr- qGbz3 ez3

where

qGbx3 = qGbx2 + _p qGbz2

qGby3 = qGby2

qGbz3 = -- _p qGbx2 4- qGbz2

(3.59a)

(3.59b)

(3,59c)

3.3.2 Gravitational Loads on the Control Surface

The control surface gravitational loads per unit span are derived in a manner similar

to that used in calculating the distributed gravitational force and moment on the blade. The

gravitational force per unit span of the control surface is obtained by integrating the

gravitational force per unit volume of the control surface over its cross-section, i.e.

-Poc = _, Pc gdA (3.60)
Ac

which can be expressed in the "2" system in the form:

,_ A A

PGc = PGcx2 ex2 4- PGcy2 ey2 4-- PGcz2 ez2
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Performing the integration for each component of Eq. (3.60) making use of Eqs. (3.53) yields:

I"
PGcx2 = | Pcgx2dA = --mcgsinc( Rcost_

./J
Ac

(3.61a)

£

PGcy2 = / Pc gy2 dA = mcg sin :_R sin
,2J

Ac

(3.61b)

£
Pc;cz2 = | Pc gz2 dA = -mcg cos :(R (3.61C)

Ac

The gravitational moment per unit span about the hinge point is obtained by integrating

the gravitational moment per unit volume about the hinge over the control surface cross-

section

P

qGh = j, (Y'oc ey5 + Zoc ez5) x Pc g" dA (3.62)
Ac

Transforming the unit vectors in Eq. (3.62) to the "2" system using the coordinate transf-

ormations denned in Chapter 2, performing the cross-product and collecting the various

terms into x, y and z components yields:

A A ,\

qGh = qGhx2 ex2 4- qGhy2 ey2 4- qGhz2 ez2

where

f.

= J, _- (W,x /_p)V,x gy2] _0c gy2}qGhx2 Pc _.Y0c [gz2 4- 4- -- dA

Ac

£

qGhy2 : _, Pc (Y0c [gz2 -- (W'x + tip) gx2]V,x 4- _oc [(W'x +/_p) gz2 + gx2]}
dA

A{

£

qGhz2 = / Pc [ -- Y0c (Vx gy2 4- gx2) -- Z0c (W,x + _p) gy2] dA

Ac

Substituting Eqs. (3.53) into the previous expressions and performing the integrations over

the control surface cross-section yields:
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qGhx2= mcgXlcCOS(eG+ (_ + _)[ COS s(R -- (W, x +/_p)V, x sin _R sin _]

+ mcgXtc sin(8 G + _) + 3) sin s(R sin _ (3.63a)

qGhy2 = mcgXlc COS(SG + _ + 3)[ COS _R -- (W,x + ,8p)sin =R COS I_]V, x

+ mcgXlc sin(_ G + (_ + 3)[(w, x +/}p) cos _R + sin :(R COS _] (3.63b)

qGhz2 = mcgXIc COS(SG + _ + 3) sin _R(V,x sin _ -- cos _)

+ mcgXlc sin(8 G + _ + 3) sin s(R sin _, (3.63c)

where the integral definitions defined by Eqs. (3.44) were used in the integrations over the

control surface cross-section.

The distributed gravitational loads acting on the control surface can be transformed

from the "2" system to the "3" system, in which the equations of motion are formulated,

using the coordinate transformation defined in Chapter 2. The distributed gravitational

force acting on the control surface can be expressed in the "3" system as:

A A A

PGc = PGcx3 ex3 + PGcy3 ey3 + PGcz3 ez3

where

PGcx3 = PGcx2 + _p PGcz2 (3.64a)

PGcy3 = PGcy2

PGcz3 : -- _p PGcx2 + PGcz2

(3.64b)

(3.64c)

Similarly, the distributed gravitational control surface hinge moment can be expressed in

qGh = qGhx3 ex3 + qGhy3 ey3 + qGhz3 ez3

the "3" system as:

where

qGhx3 = qGhx2 Jr- ._p qGhz2 (365a)
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qGhy3= qGhy2 (3.65b)

qGhz3= -- _pqGhx2+ qGhz2 (3.65C)

The distributedgravitationalmomentaboutthe elasticaxisof the bladedue to the

controlsurfacegravitationalloadsisgivenby

qGc= UGh+ (YHey5+ ZH ezs) × PGc (3.66)

which can be expressed in the "3" system as

_, A A

qGc = qGcx3 ex3 + qGcy3 ey3 4-- qGcz3 ez3

where

qGcx3 = ( -- V,x W,x YH -1- _H)PGcy3 4- YH PGcz3 (3.67a)

qGcy3 = ( -- V,x W,xYH + _H)PGcx3 + (V,xYH + W,x_H)PGcz3 (3.67b)

qGcz3 : -- YH PGcx3 -- (V,x YH + W,x _H)PGcy3 (3.67C)

3.4 AERODYNAMIC LOADS

In this study, an appropriately modified version of quasisteady aerodynamic theory,

based on Theodorsen's unsteady aerodynamic theory, is used to predict the aerodynamic

forces and moments experienced bya rotor blade in forward flight. Adetailed description

of the modification of Theodorsen's unsteady aerodynamic theory to include the effects of

a time-varying free stream velocity and variable inflow is presented in Appendix A. The

expressions developed in that appendix, combined with the quasisteady assumption, are

used in this section to develop explicit expressions for the aerodynamic forces and mo-

ments acting per unit span of the blade and the control surface.

Theodorsen's unsteady aerodynamic theory[52] is a classical two-dimensional strip

theory which describes the aerodynamic loads experienced by a thin airfoil-aileron com-

bination performing small simple harmonic oscillations in a uniform stream of
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incompressible flow. It is well known[Ill that Theodorsen's theory was developed for

fixed-wing applications and is not suitable for rotary-wing studies. Therefore,

Theodorsen's theory has to be modified to include the effects of a time-varying free stream

velocity (due to blade dynamics) and variable inflow, present in rotary-wing applications.

Greenberg's unsteady aerodynamic theory[18], which represents a modification of

Theodorsen's unsteady aerodynamic theory to include the effects of a constant component

of the angle of attack and a time-varying free stream velocity, has been used frequently

as the basis for generating the required approximate aerodynamic loads for rotary-wing

aeroelastic studies. However, Greenberg's theory does not account for the effect of a flap.

Therefore, Theodorsen's model for a wing-flap combination has been modified in a manner

similar to Greenberg for use in this study. The derivation of the modified expressions is

presented in Appendix A. It should be noted that the expressions derived, reduce to

Greenberg's theory in the absence of the flap, and no inflow.

Theodorsen separates the aerodynamic loads into a noncirculatory and circulatory

component. The noncirculatory portion of the flow results from the pattern of sources and

sinks along the airfoil chord such that the two dimensional boundary condition that the

airfoil chord is a streamline of the flow is satisfied. The circulatory portion of the flow re-

sults from the dislribution of vortices on the airfoil chord and counter-vortices along the

wake to infinity such thal Kutta's condition at the trailing edge is satisfied. Theodorsen

assumed that both the noncirculatory and circulatory lift act normal to the resultant flow.

However, for mathematical convenience, it is assumed in this study that the noncirculatory

lift acts normal to the airfoil chord. The reason for this assumption is explained later in this

chapter. The effects of parasitic drag, which is assumed to act parallel to the resultant

flow, are included.
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3.4.1 Quasisteady Aerodynamic Loads

The modified expressions for the total noncirculatory and circulatory lift, pitching mo-

ment and hinge moment for a blade with a trailing edge flap are given by Eqs.

(A25)-(A.30)ofAppendix A. It is believed that these expressions are new and that the

present study is their first application. These are two dimensional loads per unit span.

These expressions, including the quasisteady assumption (i.e. C(k) = 1), are presented

below. In these expressions, the lift is defined positive up and the pitching and hinge too-

ments are defined positive nose up.

The total noncirculalory lift per unit span is given by:

LNC = -_-pAao(Cb + Ccs)2(OT(_G 4- (_) Jr UT(_ G Jr &)

- [XA-- 4Z(cb+ 2%_)](_G+ _)-- Up

• T4 .. T 1

-- 2((.JT_ + UTC_a)--_-° -- (Cb+ Ccs)_} (3.68)

The total circulatory lift per unit span is given by:

: _-PAao(Cb + Ccs)UT{UT(_ G + _)-Lc Up

+ [_-(% + 3cos)- XA](_)G+ '_)

+ 2T1° UTc_ao + 4-_(2Cb + 3Ccs Ta)_ol6} (3.69)

The total noncirculatory pitching moment is given by:

UyNc = _-pAao(Cb 4- Ccs)2{U2T(0G + _)) -- UTU P

+ [X A -- _-(C b + 2Ccs)][OT(_ G + _))- Up]
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Ccs Ut 

a_-(o 3 T4 '+ [ Cb + Ccs) + (_-Cb -- 2XA a)_-o](UT(_ + UT(_)

1 a._(o7 3 T1 "+ -_cb+ Ccs)[ c0+ cos)+ (_-% - 2xAa)-_-_]_} (3.70)

The total circulatory pitching moment per unit span is given by:

= 1-_-PAao(C b + Ccs)UT{UT(_ G + _)-Myc Up
L

+ [_(Cb + 3Cos)-- XA](0 G + (_) + 2T10uT _
a o

Ta_ol I+_2c0+3%, _}[xA-#co + 2c0_)] (3.71)

The total noncirculatory hinge moment per unit span in given by:

MhN c -- 4PA(Cb + Ccs)2{U_'T4(_G + {/')+ T13(Cb + Ccs)2(_G + (_)

-- -_-(2T9 + T1XCb + Ccs)UT(t_G + _)

+ _-(c b + Ccs)Tl[O P - UT(0 G + _)] -- UTUpT 4

T 2 .

Jr- 2U2 T5C_ao- _-(c b -t- Ccs)21_) T3aO-(c b -t- cc$ a)_o UT(_ } (3.72)

The

M hC --

total circulatory hinge moment per unit span is given by:

1
PA(Cb + Ccs)2UT{UT(_G + _)-- Up

4

+ [-_(C b + 3Cos) -- XA](/:) G + ,:'))

+ 2-_oO UT_ + 14-_(2Cb+ 3CcsTa)_-ol,_}(T12 - T4) (3.73)
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Theparasiticdragperunitspanon theairfoilandcontrolflapis givenby

, 2,,Cdo ,

D = _--pAao(Cb + ccsXU2 + Up_.To ) (3.74)

The velocities U T and Up represent the "tangential" and "perpendicular" air velocities,

respectively, sensed by the blade cross-section due to forward flight, inflow and blade dy-

namics. In this studyU Tisdefined as the velocity component tangent to the blade's plane

of rotation, and Up is is defined as the velocity component perpendicular to U T, and lying

in the plane of the blade cross-section (see Fig. 12). As shown in Fig. 12, the velocity

componentU mmakes an angle of :z = e G+_b with the blade chord. In Appendix A the angle

:z was defined as the local angle of attack of the blade cross-section. The is also the angle

between the blade chord and theysaxis. For this reason the "5" coordinate system, which

represents the "4" (deformed) coordinate system with the torsional deformation of the

blade q_ removed, is selected as the most appropriate coordinate system in which to

identify U T and Up. This interpretation has been used in many rotor blade

studies[38,50,45,53] to define the local velocity components.

Therefore the tangential air velocity can be identified as:

UT = - VAy s (375a)

and the perpendicular air velocity can be identified as:

Up = - VAz s (3.75b)

where MAy5 and VAz s represent the y and z components, respectively, of the total air ve-

locity sensed by the blade in the "5" system due to forward flight, induced inflow and blade

dynamics. It should be noted that, due to the pitching motion of the blade, each point on

the blade cross-section senses a different total air velocity. Therefore, in this study, the

tangential and perpendicular air velocities are defined as the velocity components at the

elastic a',is of the blade cross-section.
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If VAF represents the free stream air velocity due to forward flight and induced inflow

and VEA represents the velocity of a point on the elastic axis of the deformed blade due to

its motion, then the total air velocity seen by the deformed blade can be expressed as:

vA= VAF- VEA (3.76)

For a rotor blade in forward flight with velocity VF

A ,A

VAF = _R(/Jexl - t.ezl )

where

V Fcos :(R VF sin czR + v
/l-- 2=

_R _R

(3.77)

are the advance ratio and inflow ratio, respectively. Transforming the free-stream velocity

to the rotating ("2" system) reference frame using the coordinate transformations defined

in Chapter 2 yields:

VAF QR(/_ cos _ ex2 - _ sin _ ^ ^= ey 2 -- ,,;.ez2) (3.78)

The velocity of a point on the elastic axis of the blade due due to forward flight and the

motion of the blade canbyfound from classical dynamics. The absolute velocity of a point

moving in a reference frame which is translating and rotating relative to an inertial refer-

ence frame is given by

v = RO + r + _'×r (3.79)

where R0 represents the position vector of the origin of the moving reference frame relative

to the inertial reference frame, r represents the position vector of an arbitrary point in the

moving reference frame and _ is the angular velocity of the rotating frame relative to the

inertial reference frame. The time derivative of R0istaken in the inertial reference frame

and represents the velocity of the origin of the moving reference frame relative to the
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inertial reference frame; whereas the lime derivative ofr is taken in the rotating reference

frame and represents the velocity of an arbitrary point in the moving reference frame.

As stated previously the "1" system represents the inertial, hub-fixed reference frame

and the "2" system, which rotates with the blade, represents the rotating reference frame.

Making use of Eqs. (3.3) and (3.4) once again, together with Eq. (3.79), the absolute velocity

of an arbitrary point in the rotating reference frame ("2" system) can be expressed as:

-;p=rp + × (3.80)

where again rp is used to represent the position vector of an arbitrary point in the "2"

system.

Defining rEA as the position vector of a point on the elastic axis, then using the above

relation, the absolute velocity of this point can be expressed as:

VEA ---" -rEA Jr _")ez2 XFEA (3.81)

where the time derivative OfrEA is taken in the "2" system.

The position vectorrEA can be obtained by substituting Y0 = z0 = 0 into Eq. (3.1) to yield

rEA = e ex2 + (x + e) ex3 4--v ey 3 4- w ez3 (3.82)

Before substituting the above expression inlo Eq. (3.81), it is convenient to express rEA

entirely in the "2" system. Transforming the unit vectors in Eq. (3.82) from the "3" to lhe

"2" system using the coordinate transformation defined in Chapter 2 yields:

A A

rEA = (X 4- e + u -- W/_p) ex2 4- v ey 2 4- [(x 4- u),/_p Jr W] ez2 (3.83)

Therefore the time derivative ofrEA in the "2" system can be expressed as:

rEA = (U -- W[Jp) ex2 + v ey 2 + (0,8p + w) ez2 (3.84)

Substituting Eqs. (3.83) and (3.84) into Eq. (3.81) and performing the cross product yields:

A

VEA -----(U -- Wj_p - _"2v) ex2
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/k

+ [_/+ _(e + x + u -- W,Sp)] ey 2

+ (t_/_p+ W) ez2 (3.85)

The total air velocity seen by a point on the elastic axis of the deformed blade in the "2"

system is obtained by substituting Eq. (3.78) and (3.85) into Eq. (3.76) to yield:

VA = (/z{_R cos@ - u + W,Bp+ _V)_x2

+ [ -/JE2R sin VJ - v - _(x + e + u - W/_p)] ey2

- (,;.{_R + Li/_p + vv) _z2 (3.86)

To identify the tangential and perpendicular air velocities it is necessary to express the

total air velocity VA in the "5" system. Transforming the total air velocity given by Eq.

(3.86) to the "5" system using the coordinate transformations defined in Chapter 2 yields:

A A A

VA = VAx5 ex5 -I-- MAy 5 ey 5 + VAz 5 ez5

where

MAx 5 ----- -- LI -F _'_V -- _/V,x -- _}(X -I- e Jr- u)v, x -- _vw, x -- ;.t_'_R(W,x Jr- _p)

+ I_R cos _ -/_D, Rv, x sin _ (3.87a)

VAy s = -- _2(x + e + u)- _vv, x + _2w,flp - 9 - I_QRv. x cos

- I_R sin _, (3.87b)

VAz 5 = -- W -- _"_V(W,x + /_p) -- ;.D,R - t_D,R(w, x +/?p) cos _ (3.87c)

where the ordering scheme has been employed to neglect the higher order terms.

Therefore, according to Eqs. (3.75), the tangential and perpendicular air velocity, re-

spectively, seen by the blade are given by:

U T = __(x + e + u) + Qvv, x - _W/_p +
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+/_Rv, xcos_ + ,uE2R sin _, (3.88a)

Up = W + _)v(w, x + j_p) + Z()R +/_R(w, x + j_p) cos (3.88b)

Equations (3.88) are used to develop explicit expressions for the distributed aerodynamic

loads acting on the blade and control surface.

As stated previously the noncirculatory and circulatory lift are assumed to act normal

to the total air velocity and the parasitic drag is assumed to act parallel. Sincelhetotal

air velocity is expressed as components in the "5" system, it is only natural to resolve the

aerodynamic forces and moments into components along the axes of the "5" system, as

shown in Fig. 12. Defining qS,n as the angle between the total air velocity and theys axis

in the Ys-Zs plane, then the aerodynamic force per unit span in the "5" system can be

expressed as:

A A

-PA = PAy5 ey5 3- PAz5 ez5

where are given by:

PAy5 -- D cos _tn -- (LNc + LC) sin q_n (3.89a)

PAz5 = -- D sin ,_5_n+ (LNc + LC) cos ¢_n (3.89b)

The angle _b_n, denoted as the "inflow angle", is so called because it represents the

angle between the tangential velocity UT and the resultant air velocity \UB+UB which

exists because of the perpendicular air velocity Up, which is due primarily to inflow. The

inflow angle is defined by the following:

Up
sin _in - (3.90a)

'f 2

UT 4- U2

UT
cos ¢_n - (3.90b)

\/U2T + U2

Examination of the expressions for U-r and Up given by Eqs. (3.88) reveals that
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uT ~ o(1)

Up ~ o(_)

Thus, within the context of the ordering scheme,

+ - (3.91)

Therefore, Eqs. (3.90) can be approximated as:

sin @in "" Up
UT (3.92a)

cos q_in _ 1 (3.92b)

Equations (3.91) and (3.92) are not valid in the vicinity of the boundary of the reverse flow

region, where the tangential velocity U T approaches zero. However, since the air loads in

this region are small compared to those on the outboard sections of the blade, where the

effective air velocities are much greater, their use in Eqs. (3.89) should have only a minor

impact on the total air loads.

The use of Eq. (3.92a) is convenient, but can lead to mathematical difficulties in the vi-

cinity of the boundary of the reverse flow region when the tangential velocity UT ap-

proaches zero. Such difficulties can be avoided, however, by assuming in Eq. (3.89a) that

the noncirculatory lift LNC acts normal to the blade chord, so that the angle _in can be re-

placed by the angleofattack_=8 G+_. Furthermore, the use of Eq. (3.91) is made inEq.

(3.74) so that the parasitic drag can be replaced by the expression

c )U 2_C_°
D* = -_--PAao(Cb+ cs Tt--_--o / (3.93)

Making the aforementioned substitutions, Eqs. (3.89) become:

Up

PAy5 = -- D - LNC(0G + _))-- Lc UT (3.94a)

PAz5 = -- D-UP + LNC + LC (3.94b)
UT
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where it has been assumed in the above expressions that (8 G+_) is a small angle.

Though this is not consistent with the ordering scheme used in this study, it is assumed

here to be consistent with the aerodynamic formulations of Refs. 38, 50, and 53.

In the derivation of the aerodynamic loads in Appendix A the noncirculatory and

circulatory pitching moment are taken to act about the elastic axis of the blade. Therefore

the components of the aerodynamic pitching moment per unit span about the elastic axis

can be expressed in the "5" system as:

A
qA = qAx5 exs

where

qAx5 = MyNC + MyC (3.95)

The aerodynamic hinge moment per unit span in the "5" system can be expressed as:

Ah = qAhx.5 exs

where

qAh_ = MhNC + MhC (3.96)

In addition to the numerical difficulties associated with the existence of the reverse flow

region, problems arise when interpretating what happens to the aerodynamic loads inside

this region, where the air is flowing over the airfoil in a reversed direction. A reverse flow

model_ discussed in the next section, is included in lhis study to account for this flow re-

versal in a straightforward manner.

3.4.2 Reverse Flow Model

In forward flight, a region on the retreating side of the rotor disk experiences reversed

flow. This reverse flow region results from the fact that on the retreating side of the rotor

disk the component of the total air velocity relative to the blade due to forward flight is di-

rected from the trailing edge to the leading edge of the blade. At certain inboard sections
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of the blade (where the velocity of the blade due to its rotation is small) this reversed

component of the total air velocity is larger than the component due to the blade's rotation

so that the resultant flow sensed by the blade cross-section is from the trailing edge to the

leading edge of the blade. All blade stations and azimuth angles for which the total air

velocity relative to the blade is reversed comprise the reverse flow region. The boundary

of the reverse flow region is described by the locus of points such that the reversed com-

ponent of the total air velocity due to forward flight is just cancelled by the component due

to the rotation of the blade. The equation describing the boundary of the reverse flow re-

gion can be found by equating the tangential air velocity UT to zero. It is impossible to

obtain an exact solution for the boundary of the reverse flow region from U T = 0, unless

the motion of the blade is known a priori. However, an approximate solution for the

boundary of the reverse flow region can be obtained when blade dynamics are neglected.

For this caser25J the equation of the boundary of the reverse flow region is given by:

r = x+e = -/JRsir_ (3.97)

which represents the circular region shown in Fig. 6. Generally Eq. (3.97) isa reasonable

approximation for the reverse flow boundary for low to moderate advance ratios. As shown

in the cross-hatched region in Fig. 6, the reverse flow region is bounded by a circle of di-

/_R
ameterl_R centered at r - for the_ = 270 ° azimuthal station on the retreating side

2

of the rotor disk. Since the diameter of the reverse flow region is equal tOlzR, as the for-

ward flight velocity VF increases, the size of the reverse flow region also increases. The

reverse flow region can have a significant impact on the rotor aerodynamic loads, partic-

ularly at high advance ratios; and therefore it should be taken into account when computing

the aerodynamic loads.

In this study it is assumed that the aerodynamic lift and moment per unit span are zero

inside the reverse flow region and that the aerodynamic drag per unit span reverses its

direction inside the reverse flow region, remaining parallel to the total air velocity. Thus

the reverse flow model employed in this study consists of setting the noncirculatory and

circulatory lift to zero and reversing the sign of the parasitic drag for all blade stations in-
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side the reverse flow region. This is accomplished by multiplying all of the lift and moment

terms by the reverse flow parameter RLM , and by multiplying the parasitic drag terms by

the reverse flow parameter R o, in the expressions for the components of the distributed

aerodynamic loads given by Eqs. (3.94) and (3.95)

Up

PAy5 = -- RDD- RLMLNC(/)G+4)-- RLMLCuT (3.98a)

,Up

PAz5 = -- RDD _ + RLM(LNc + LC) (3.98b)

qAx5 = RLM(MyNc+ Myc) (3.99)

where the reverse flow parameters are defined as:

= _0 for 0 < x < Xrev(t_)
RLM

for x > Xrev(_)

(3.100a)

S--1 for 0 _< x _< Xrev(_)
RD

for x > Xrev(_)

(3.100b)

The quantity Xrev(_, ) represents the location of the boundary of the reverse flow region on

blade span, and using Eq. (3.97) it can be defined as:

Xrev(_) = - (e + lzR sin ¢) (3.101)

Equations (3.98)- (3.100) are used in the next two sections to develop the distributed

aerodynamic loads on the blade and on the control surface.

3.4.3 Aerodynamic Loads on the Blade

The expressions for the noncirculatory and circulatory lift and pitching moment acting

on the blade without the presence of a control surface can be obtained by setting Ccs = 0

in Eqs. (3.68)- (3.71).

The noncirculatory lift acting on the blade is given by:
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1 a 2 -LNc. = TPA oC_rUT(eG+ _))+ UT(eG+ _)

- 0p- (XA- ¼cbXi)G+ _))] (3.102)

The circulatory lift acting on the blade is given by:

= 1--_-PAaoCbUT[Ul-(8 G + _)-- UpLCb
z

I
Jr (-'_'Cb -- XAX(_ G + _)]

(3.103)

The noncirculatory pitching moment acting on the blade is given by:

MyNC b = lpAaoC_[U_.(0G + @)_ (XA _ lCb)U p _ UTUp

!x.c.+ +2

+ (X A -- 41--Cb)01-(eG + _)] (3.104)

The circulatory pitching moment acting on the blade is given by:

= lpAaoUTCb(X A -- lCb)[UT(8 G + _b)-- UpMyCb
/4

+ (_-C b -- XAX_)G + _))] (3.105)

The parasitic drag acting on the blade cross-section is obtained by setting Ccs= 0 in Eq.

(3.74), i.e.

1 a ...2 2 Cdo
Db = yPA oCbtUT + UP)(--_-° ) (3.106)

Similarly, setting Ccs= 0 in Eq. (3.93) yields

, 1 a ..2, Cdo,
Db = -_-PA oCbU'#,-_-° )

(3.107)
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Since Theodorsen's theory[52] was derived for a symmetric airfoil, the moment per unit

span given by:

1 2,,2 _C_Mcam b = _-pAaoCbl, UT + U2X ) (3.108)

accounts for, in an approximate manner, the moment about the elastic axis due to any

camber in the airfoil. This was also done in Refs. 38 and 50.

Using Eq. (3.98). the components of the aerodynamic force per unit span acting on lhe

blade in the "5" system can be expressed as:

Up

PAby5 = -- RDDb- RLMLNcb(SG + _)-- RLMLcb UT

, Up

PAbz5 : -- RDDb-_- T + RLM(LNCb + LCb)

Substituting Eqs. (3.102), (3.103), (3.106 and (3.107) into the previous expressions yield:

2 Cdo
RDpAaoCb(U2 + UpX_o )PAby5 -- 2

RLM 2 "
8 PAa°Cb[UT(f_G + ''_) + UT(_G + 6/))- l_lp

--(XA -- _CbX_G + (_)](_G + (_)

RLM

2 PAa°cbUp[UT(0G + _) -- Up

I _ XAX_)G + _)]+ (_-Cb

PAbz5 -- RDIpAaoCbUTUp(cd°)
2 ao

+ _--,DAaoC2EILIT(0G + _) + UT(0 G + ,_) -- Up

--(XA -- _-CbX_ G + _)]
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+ --_-PAaoCbUT[UT(_G 4- q_) -- Up

+ (2 % - xAX_G+ @)]

Substituting the expressions for

pressions yields:

PAby5 :

UT and Up given by Eqs. (3.88) into the above ex-

1 x - _,),+ 1 •PAaoCbRLM {-_ A -- 21_CbXt)G + "_'-(XA -- IOb)_V(_)G + _ Xw,x + ,6p)

1 " (_)(,;._ R) 1 W2+_:x_- ½%×_o+ +y + _v_w,x+ _)

+ (,;.&"2R)W + l_)2v2(W,x + _p)2 Jr Qv(;._)RXw, x +/_p) + _(,;._)R) 2

+ (;._2RXw, x +/_p)](l_R) cos t_

1
+ -_(w, x +/_p)2(i_(_R)2 cos2_ }

+ pAaoCbRLM(0G + (_){- _-_2vWV,x - _-()VV,x(,;.E2R)- _-CbQVV,x(# G + (_)

I E2uw- 1--e_)w + IE)W/3p(,;.()R) + _--cb_w,Bp(_ G + (_)2 2

2

1 (_5)- leC)2v(W,x 1 (. • l()u(;._.)R )8 %'_(hc + + ,6p) + -_-%._vw.×

- _-Cb()U(_) G + ¢)- _-C2e(}._)R)- -_ecbE)(_) G + _)
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' *  c0 0G+ )V,x+ [ - _ v,,,- _VV,x(W,_ + #p) -

1
+ _-_w#p(W,x+ #p)- 2,>(W,x+ #p)- _eu(w,x + #p)

- _-e_(w, x + ,Sp)+ _-CbW,x](/IQR)cos I#

+ [ __ 1__, _ ___)V(W, x + #p)_ _-(;.gR)- 1_-%_:_(W,x+ #p)2

1
8 cb(_)G+ _)](/_gR) sinI#

1 w 1 w
- _-( ,x + _pX#_)'R) 2 cos _ sin _ - _( ,x + _p)V,x(/_"2R) 2 cos21_}

1 c " - -_-Cb9+ PAaoCbRLM(eG + _)2{ _ 1 Cb_V_/ x -- 1---Cb_)-(/V x 4- _- b&")W/_p8 ' 8 '

1 .Cb_ _ _ lcb(_ ) + _/,x)(lz(_R)cos _ + lCb_V x(/_R)sin _}8 8 '

+ PAaoCbRLMX(e G + ¢)[ _ 10 w _ I 2 _9(,_._:_R)_:_ v(w,×+ #p)-

- _-CbQ(8 O + _)- _-Q(W, x + #pXI,_)R)cos _]

I--W2- W(2_QR)- 1 v2 _(:£2R)2 , 2_2+ PAa°CbRD( ){ -- 2 _- -- e_v -- -- -_-e _z

+ [ -- _/V,x -- eQV,x -- vv(W,x +/_p) -- (;._')RXw, x +/_p)](p_R) cos

+ [- _vv, x + _W/_p-- v- _u - Qe](ll_R) sin

1 rv 2 _ (W,x + cos2_- V,x(p.f_R) 2 cos ¢ sin I_ - _-L ,x _p)2](/-_QR) 2

- _-(t_R) 2 sin21_}

+ f)AaoCbRD(_o° )X[ -- _2VV,x + _2W_p -- _)_/ -- _Q2u _ _2 e
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- QV,x(HQR) cos I,_ - _(#QR) sin I_]

1 Cdo 2 2
---_-pAaoCbRD(--_-o)X (3.109a)

PAbz5 =

PAaoCbRLM{-._-_"_M_/V,x--._-_'_VV,x(}._'_R)_ 1

_x.-½co_e(0o+_)-

+ "_"_ww,8 p -- "_'-*V -- "_-_'2U* - .-_--egw + -_.-Qw(,;._2R),8p

I _vg(w, x+ ,Sp)-- _-_;._R)- --_-Cb_W, x+ 8p) + 1 • "_c¢;'(eG+ @)2

1 • 2_;_ u(;.(_R)1 eQ2v(W,x + _p) _ _8_Cb_-_VW,x_2

--_--eQ(2_R) + 81---CbeQ(0G+ _)

I i ,9 1.+ [ - _XA -- -£%X o+ $)v,_-- _-wv,x-- (_vv,_(w,_+ Bp)

-- -_--(,;.QR)V,x + 1%(_G + _))V,x +1_-QW/_p(W,x+/_p)

-  v w,x+ +  eO(w,,÷

- 81----CbW,x](/I_R)cos

I I " 1__v_ .__(_v(W,x+ _p)+ [ - -_x_ - y%Xeo + _)- 2

-- -_}._.R) + _-Cb(_(w, x + _p)+ -_-Cb(_)G + _)](/I_)R)sin I//

1 w 1- _ ,x+/_pX#nR)2cos_ sinW- _(W,x+/_p)v,_(#_R)2cos2_}
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+ PAaoCbRLM(0G + _){_-CbQW,x + Qwv, x + -_-CbQW, x + eQ2VV,x

1 Q2
1 CbQW_p _ _QW,Bp - e_2W_p + --_-CbQ + _ + _uQ + eQv8

1 e2_2+ lcb_u + e_2u + Y8

+ [_-CbQ, x + _VV,x 2 -- _')WV,x_ p + VV, x + _(e + u)v, x

+ _-Cb(::_](#.(2R) COS

+ [_r_VV,x -- _-Cb_'_V, x -- _"_W_p + _/ + _r'_U+ eQ](/_QR) sin I_

+ V,x(#QR) 2 cos _ sin _ + lv,x2(#_)R)2 cos2_ + _-(#QR) 2 sin2_}

+ PAaoCbRLMX[ - -- _(X A +

2

1-_(w, x + _pXI_)R) cos _]
2

+ PAaoCDRLMX(_G + (_)[_)2VV,x -- _)2W,_p + _'_Q + __2u + e_ 2

+ _)V,x(l_(2R ) cos _ + ()(H(_R) sin _]

+ __PAaoCbRLMX2(_G + _)()2

Cd° _(W ++ PAaoCbRo(--_--o )[ -- ;__)RX/_)R) sin

l<w,x +/_pXH()R)2 cos _ sin _]
2
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-- l_(w. x+ ,SpX#_R) cos _,] (3.109b)

Using Eq (3.9g), together with Eq. (3.108), the aerodynamic pitching moment about the

elastic axis of the blade in the "5" system can be expressed as:

qAbx5 = RLM(MyNCb + MyCb --t- Mcamb )

Substituting Eqs. (3.104). (3.105) an d (3.108) into the previous expression yields:

_ _.oC_x_-½_0×_÷_)-_×_-¼c0)UpqAbx5 -- 8

1 2 "- r(x_-_-%)+_1_ +_)+_x_-¼c0)UT_+_/_

4- DAaoCbUTXA[UT(OG -I-_)- Up Jr (_-c b -- XAXe G -{-_)]

RLM a 2,-2 u2X__o o )+ ----_--PA oCb{,UT 4-

Substituting the expressions for UT and Up given by Eqs. (3.88) into the above ex-

pression yields:

qAbx5 =

,OAaoCbRLM { _ ..__[(XA 1 2 1 2 ""- _-c0_+-_-c01c0/_o+_/-_-c0/x_-_-c0_w

1 XA_/_V -- 21--eXA,* -- _-XA(/(}__ R) -- _-eXA,)(;._)_ R)2

+ [ - 1---XA*V x -- _-XAV'x(_;"_R) - _-Cb(XA -- _ -cb)w'x2

I .XA_/(W,x + _p) _ __eXA_)(W,x + /_p)](/_)R) COS2

I

+ _(XA1 -- lcb)Cb_(W'x + /_P)- 1XA";v2 -- 1XADV(W2- ,x +/_p)
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Cmo Cmo

1 XA(,_R ) + Cb_/(__o ) _{_ cbeQ(____o )](#QR ) sin I//2

Cm° _-XA(W, x + . sin+ [CbV,x(--_--o ) -- /_p)](//_R) 2 cos I//

1 XAV,x(W, x +/_p)(/A2R)2 cos2_ + lcb(__oO Xp_2R)2 sin2_}2

+ PAaoCbRLM(_G + q_){__Cb(X A _ ___Cb)_1 -- + 2-1 XA_/2 + eXA_/+ -2-1e2XAQ2

+ [ 1---Cb(XA -- 1 Cb)_/ x + XA_/V,x + eXA_'-_V,x
8 4 '

I - 41--%)%_](/JQR)cos+ -_-(X A

+ [- ¼% V,x+XA VV, -xA w p+

"4- XAE'_U + eXA_)](H_R) sin

+ XAV,x(tu_R) 2 cos _ sin _ + IXAV x2(H_R) 2 cos2_
2 '

+ _-XA(PE)R) 2 sin2_ }

1
+ PAaoCbRLMX{ -- _(XA-- yCbXXA-- --_Cb)_'2(_G + _5)----_XA QW

• Cmo Cbe_2(__)I XA_2V(W,x + /_p) _ 1XA_)()._R ) + Cb_V(_) +2

Cm° _-XA_(W, x +/{p)](HQR) I/_+ [%_:_v,×(--_o ) - cos

Cmo
+ CbQ(--_---XI_._R) sin _}

o o

+ DAaoCbRLMX(SG Jr-_)rXA_)2VV,x -- XA()2W/_p 4- XA()V 4- XA_)2U 4- XAe_ 2

+ XAQV.x(_QR ) cos _ + XA()(HQR) sin _]
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+ aoC0RL x2c0 2 - o°)

1 a c 2
+ _-PA o bRLM x (_G + _)XA _2 (3.110)

The distributed aerodynamic loads acting on the blade can be transformed from the "5"

system to the "3" system, in which the equations of motion are formulated, using the co-

ordinate transformation defined in Chapter 2. The distributed aerodynamic force acting on

the blade can be expressed in the "3" system as:

A A A

PAb = PAbx3 ex3 + PAby3 ey3 + PAbz3 ez3

where

PAbx3 = -- V,x PAby5-- W,x PAbz5 (3.111a)

PAby3 = PAby5 (3.111b)

PAbz3 = -- V,xW,x PAby5 + PAbz5 (3.111C)

Similarly, the distributed aerodynamic moment acting on the blade can be expressed in the

"3" system as:

A A A

qAb = qAbx3 ex3 Jr qAby3 ey3 Jr qAbz3 ez3

where

qAbx3 = qAbx5 (3.t12a)

qAby3 = V,xqAbx5 (3.112b)

qAbz3 = W,x qAbx5 (3.112C)
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3.4.4 Aerodynamic Loads on the Control Surface

The contributions to the total noncirculatory and circulatory lift and moment acting on

the blade due to the presence of an aerodynamic surface on the blade cross-section can

be determined by subtracting the contribution due to the airfoil alone given by Eqs.

(3.102)- (3.105) from the total airloads due to the airfoil and the control surface given by

Eqs. (3.68)- (3.71), i.e.

A LNc = LNC- LNCb

A LC = Lc - Lcb

AMyNc = MyNC -- MyNC b

AMy C = My C - Mycb

where the A symbol refers to the change in the quantity due to the presence of the control

surface. Carrying out these subtractions yield:

ALNc ._._PAao(Cb+ 2 1 c _ " T4= Ccs) [-_- cs( G + (_)-- 2(UT_ + UT_ a)-'_

.. T1
-- (cb+ ccs) -Eo]

+ lpAaoCcs(2C b + Ccs)[OT(0G + (_) + UT(_)G + (_)

-- (XA- lcbX_ G + (_)- Up] (3.113)

A Lc = lpAao(C b + Ccs)UT[3Ccs(0G2 + _)) + 2 TI°UT&ao

+- 2cb+ 3cc 

+ _-PAaoCcsUT[UT(_G Jr _)-- Up- (X A -- -_-CbX0 e + (_)] (3.114)
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AMyNC={-_Aao/C0+ccs)2_-_ccs_2c0÷ccs_G+_)

1

1
2 CCS[IJT((gG Jr- (I))- Up]

_ 2T"u25ao - a_o Cb + Ccs)UT5

+ [ Cb + Ccs) + (_-C b -- 2X A ](0T(_ + UT_;)

T7 3 T1 ""
+ _(cbl + CCS)[ a____(oCb +Ccs) + (__C b _ 2XA a)____]_}

+ -_-pAaoCcs(2Cb + Ccs){U2(SG + _)-- UTU P

- [(XA- _-cb) +

4- (X A -- lCb')[UT(L0 G 4- (_)- Up]} (3.115)

AMy C = _-PAao(Cb 4- Ccs)UT[ 23-_-Ccs(_G 4- _)4- 2 T10 UT_
a o

÷ 1_(2Cb + 3Ccs Ta)_ol (_][XA 1- --_-(% + 2Ccs)]

4. _-PAaoCcsUT[UT(_G + _)-- Up

-- (XA-- lcbX_)G + _)][XA-- -_3C b + 2Ccs) ] (3.116)

The additional parasitic drag acting on the blade cross-section due to the presence of

the control surface can be defined as:

Dc = D - D b -- 21---PAaoCcs( u2 Jr UPXTo)2 Cdo (3.117)
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where Eqs. (3.74) and (3.106) have been used. Similarly,

D* * 1 a c U2' Cd° "
D_ = -gb = _-PA o cs TI.--_--° } (3.118)

is obtained by subtracting Eq. (3.93) from Eq. (3.107).

Equations (3.113)-(3.116) represent the contribution to the total lift and pitching moment

per unit span acting on the blade cross-section due to the presence of a flap as predicted

by 2D quasisteady aerodynamics. Comparisons of experimentally and theoretically deter-

mined values of the additional lift and moment produced by a flap have demonstrated in

the case of fixed-wing aircraft that 2D quasisteady aerodynamics tend to overestimate the

airloads by 25-50%[17]. This discrepancy, which increases with increasing Mach number,

has been attributed primarily to the presence of a gap between the trailing edge of the

airfoil and the leading edge of the flap, which was not accounted for in the theoretical

model. The presence of a gap, which is not modeled in the present study, reduces the ef-

fectiveness of the flap[55]. Therefore, a multiplicative correction factor denoted as C t ,

which is less than one, is used to scale the control flap aerodynamic loads given by Eqs.

(3.113)-(3.116).

Using Eqs. (3.98)the components of the additional distributed aerodynamic force in the

"5" system acting on the blade cross-section due to the presence of a control surface are

given by:

Up

PAcy5 = -- Dc - Ct [ALNc(8o + _'_)+ ALc-_- T ]

,Up

PAczS = -- Dc_-T + Cf(ALNc + ALc)

where the fact that the control surface is located outside the reverse flow region has been

used (ie. RD= RLM = 1). Substituting Eqs. (3.113), (3.114), (3.117) and (3.118) into the pre-

vious expressions yield:

PAcy5 --
. 2,,Cdo ,

1pAaoCcs(U2 + UpX--_- ° ,



PAcz5

Ct ,2_1c '_) - T4
8 PAa°(Cb +ccs) /y cst G -t- _)- 2(U T6 + UT_S) a °

.. T 1

- (% + %s)6_o-o](eG+ _)

it-PAaoCcs(2C b + Ccs)[0T(_ G 4- _) 4- UT(_) G 4- _))

--(X A - -_-CbX0 G + _)-- Up](19G 4-_)

(_f-PAao(Cb+ Ccs)Up[ 23--Ccs(_G+ _)+ 2_o0 UTCS

+

_-_-fPAaoCcsUp[UT(tqG + _)-- Up-(X A- _-CbX_ G + (_)]

+ TPAao(CbCt+ Ccs)2[lCcs(i)C + f_) - 2(OT_ + UT3).T4
z a o

.. T 1

- (cb+ CcskSTo]

+ _--J-fPAaoCcs(2Cb + Ccs)[0T(_ G 4-_)4- UT(_)G Jr(_)

- (XA--¼cbXOg + _)--Up]

Cf Ccs)UT[_.Ccs(i)G _) + 2 TIO UT{_+ TPAao(Cb + + a°

+-_--(2Cb + 3Ccs Ta)-_ol_;]

+_,,,,.oCc_O_E_/_+_/-u_-/x_-½cox0_+_/l
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Substituting the expressions for UT and Up given by Eqs. (3.88) into the above ex-

pressions yield:

PAcy5 =

pAaoCf {-_-CcsW -- (c b + -- --_(c b + CcsX2C b +a o a o

- (Cb + Ccs)e(.)W TI° _ + ccsW(2QR)- 34---(cb + Ccs)ccsW(_) G + _)a o

--(Cb + Ccs_'(,;.')RTaro°'--_-(Cb + CcsX2Cb + 3ccsX)."R Ta_ol_

-(% + Ccs)e_(£_RTa)_o°6 + -_-Ccs(#._R)2

- 4-_Cb + Ccs)Ccs(t)G + @X}._R)

,. 710 _ Ta._.o°+ [ - (c b + Ccs)WV,x--_-o o - (c b + Ccs)V.x(2QR

+ %jv(W,x +/_p) - (% + Cc_W,× +/_pTa)-_o°a

--_(Cb + Ccs)(2Cb + 3CcsXW,x + /_p Ta)-_ol&

-- (c b + Ccs)e_)(w, x + ,_p Ta_-o°a 4- Ccs(W, x + ppX,;o_R)

3
4{Cb + Ccs)Ccs(W, x + flpX_G 4- _)](II_'_R)COS

+ [ - (% + Cc_)W-_o°'- (cb + Ccs)_V(W,x+/_pTa)_o° '

- (c b + ccsX}.,QR Ta)_c°_](/_QR) sin

- (c b + ccsXw, x +/_p Ta_-o°_(/1_R)2 cos _ sin
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1 c
+ [ -- (C b + Ccs)V,x(W,x + ,/_pTa)_o° (_ + _- cs(W,x + #p)2](_u_R)2 cos21_}

1 Ccs</_ , _ ___Ccse_ w + __(c b + +2 ao Ccs) v a_-6

- lccsV().()R ) - _(2c b + Ccs)CcsV(_G+ _))+ 14---(Cb + Ccs)2e_ T4 6
d o

1 .3 T1 "__ ___Ccse_(_:._R )+ -_% + %_To_

-- 8_(2Cb + Ccs)Ccse_)(_G + _)-- 1-_6 Cb + Ccs)2Ccs(OG+ _))

• c _2vT._+[-_%+%_)2V,xa_'S-_%_WV,x+_%+ c_, ,X_o_

1 CcsV.x(,:QR ) - _(2c b + Ccs)CcsV,x(_G + _)2

1 • __Cb + CCS)2Q ____6- _-Cc_V(W,x+ #p)+

- -_-Ccse_2(w, x + #p) + -_-(2cb + Ccs)CcsW,x](/_;)R) cos

+ [ _ .__(Cb + Ccs)2_V xTa6 _ 1ccsW _ 1' ao 2 -2-ccsQv(w'x +/_p)

CSI ao

- 8_2Cb + Ccs)Ccs(0G + _)](/IQR) sin

-- _I Ccs(W,x + #pXM_R) 2 cos _ sin i_
g

I C
-- -_- csV,x(W,x + #pX#_R) 2 cos2_}
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+ PAaoCf (8 G + _)2[ _ __2c b + Ccs)Ccs_

-- -_(2Cb + Ccs)Ccs(_ + V,xX/I_R) cos _ + -_(2c b + Ccs)Ccs_V,x(/_R) sin _]

- (c b + Ccs)_()._R Ta)_o°_

- (c b + Ccs)_)(w, x +/_p Ta)_o°c_(#(_R ) cos _]

1
1 ccs_,z_2 ,+ PAaoC1 x(8 G + _)[ -- --Ccs_W -- _ v[W'x +/_p)2

-- _-CcsQ(W. x + ,6pXflQR)cos _]

+ PAao_o° [ -- Ccs(V + e.QXI_)R) sin _ - CcsV,x(pQR) 2 cos _ sin

1 Ccs(l_g)R)2 sin2_]
2

+ PAao_o° X[ -- Ccs(:_(_/+ eQ) -- CcsQV,x(/_()R)cos _ - Ccs_(f_QR ) sin _]

1 a cd° x 2 _2
- y,OA o-_--° Ccs_Z (3.119a)

PAcz5 =

P AaoCf {- _c b + Ccs)2()a_c:S(p_lR)cos i#

+ - cs, ao
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1 Ta_-ol_ + 2(% + Ccs)e_ TI° a4- -'_C b Jr CcsX2C b + 3Ccs ao

3
+ _-(c b + Ccs)Ccs(_)G + _)](/I()R) sin

-- TIO _ - _l---Ccs(W,x +/_p)](/_:_R) 2 cos I_ sin+ [2(Cb + Ccs)V'x--_-o0 Z

+ (C b +Ccs Ta)_o° _(/-l_R) 2 sin2_ }

+ PAaoCf (8 G + _)[_-(2C b + Ccs)Ccs_(/_R)cos _ + Ccs((Z+ eQX/I(2R)sin

+ CcsV,x(/_R) 2 cos i_ sin _ + -_-Ccs(ll_'_R) 2 sin21_]

+ PAaoCf X{ 1 • Ccs)S_(zTlo(Sao __(c b + 2 T4"-_-CcsQW + 2(c b +- - Ccs) _ ao 3

1 3ccs){) Tll _ + 2(Cb + Ccs)e_)2 T__
+ --_Cb + Ccs}(2Cb + do "_o

3
+ + +

4

+ [2(Cb + Ccs){)V'x'-_-_5-u -- ---'Ccs_'_(w2_ ,x +/_p)](/_)R) cos

+ 2(c b + Ccs)_) TI° &(/I_R) sin _}
d O

+ PAaoCf x(8 G + (;5)[Ccs_)_z+ CoseC;)2 + Ccs_)V,x(lZ_R ) cos _ + Ccs_(/_)R ) sin _]

+ PAaoCf X2(Cb + Ccs){'_2_o0 5
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+ _--PAaoCcs_ 2 (3.119b)

From Eq. (3.99), the additional aerodynamic moment about the elastic axis in the "5"

system due to the presence of the control surface is given by:

qAcxS = Cf(AMyNC 3- AMyc)

where the fact that the control surface is located outside the reverse flow region has been

used (i.e. RD = RLM = 1). The control flap is assumed to be symmetric (i.e., uncambered).

Substituting Eqs. (3.115) and (3.116) into the previous expression yields:

Ct ___2Ccs(2Cb + Ccs_([) G + _)qAcxS = --8-PAao(Cb + Cos)2{ --

1
+ c_,[XA-- _cb + %,)](0G + _)

1
2 Ccs[0T(QG + _)- LIp]

-- 2 a_-U2_- _-/-(C b 4-Ccs)UT_
o ao

a_o T4 ', 3 _ 2XA a)_oo](UT_5 + UT_J )+ [ cb + %_)+ (7%

m I .-

%_)[a-_o% + Cos)+ (Tcb

r 23- PAaoCcs(2Cb 3- Ccs)_ UT(_ G 4- _) -- UTU P

1 2 ""

- EIxA- -Co)+ +

+ (XA-- _-%)[Uz(eo + _') -- Up]}

Cf

+ TPAao(% + %s)UT[_%_(00 + _)+ 2TIOUT(_
a o
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+ _.__(2Cb+ 3CcsTa)_ol5]FXA 1-- -_-(% + 2Cos)]

+ _---_fPAaoCcsUT[UT(SG + q_)-- Up

Substituting the expressions for UT and Up given by Eqs. (3.88) inlo the above expression

yields:

qAcx5 =

+- c0+Cc.)2 R)cos
d O

I c ±c _T_o_
+[2(Cb+CcsXXA--_- b-- 2 cs,- ao

+ -_-(Cb + Ccs)(2Cb + 3ccsXXA - _- b-- 2 cs, ao

1 c 1 T10 1 .2 T18
+ 2(Cb + ccsXXA -- -_- b -- _-Ccs)eQ-_-o 6 + -_(Cb + Cos) To °

- 2Ccs(XA 3C -_-(2Cb + Ccs)CcsW-- 4- b -- CcsX_/Jr- ;._R)-

_--(C b 4-2 "(Cb 4- ao - do

81{c b + Ccs)3 T1&ao- -_-(2cb + Ccs)Ccs(2QR)](M_R ) sin

lc lc " Tl° _ 1 c Ccs)2vxT4&
+ [2(cD+ ccsXXA- -_- b---_- csJV,x_oO-- _ b + , ao

_ lCcs(XA_ 3 C
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1(2Cb + Ccs)Ccs(W,x +/_p)](/_QR)2 cos _ sin8

4 1+ +
--_- cs, ao4

-- -_C b + Ccs)2 T4 _](#_)R) 2 sin2_}
d o

+ PAaoCf (t_G + _){ -- 1--_(6Cb + Ccs)2Ccs_(#QR) cos

3 c 3 c
+ [%_(XA -- _- b -- c_)v + CcJXA-- _- b -- %_)e_

+ 4_(2Cb + Ccs)CcsV+ _-(2C b + Ccs)Ccse_](f,_R) sin ¢

3 c -- -_2c b Ccs)CcsV,x](l_'_R) 2 _ sin+ [Ccs(XA -- _- b Ccs)V,x + + COS

+ [lccs(X A 3C _-(2C b R)2 sin2_}- _- b - c_)+ + c_)C_s](_

1 c I c _Ov TI°
+PAaoCrX{2(Cb+CcsXXA--_ b-- 2 cs,-" ao

1 I c I c _Q T11_
+ _(Cb + CcsX2Cb + 3CcsXXA -- _- b -- -_- cs,-

1 c 1 c _e_ 2 Tl° 3 _(Cb + ,2_ T18+2(Cb+CcsXXA-_- b _- cs, _ +-- Ccs ) _,Z--_--o o

-- _-Ccs(XA -- 43_Cb-- Ccs)QW - 1Ccs(XA -- 43"_-Cb - Ccs)_)('_,_'_R)2

--_(2C b + Ccs)CcsQk;V- _-(C b + CC.,)2'-2_/T4 _--_-(Cb + Ccs)2e_'_2 T4 _a° a o

1 c Ccs)3_)a-_-_ y(2Cb Ccs)Ccs_Q(/-QR)-_4' b+ - +

1 c 1 ,.-. T_o _ _ __..(cb + Ccs)2_V,x T4 6+ [2(Cb + CcsXXA - _- b -- -_-Ccs)_ZV,x_o ° ao
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_ ._.Ccs(XA -- __Cb3_ CcS)_(W,x .{./_p)

-- -_2C b + CCS_Cs_(W,x -t- _p)](/_QR) cos @

+ [2(c D+CcsXXA_ 41.__Cb_1 ,_TIo ¢yCcs_'_

--_-(C b + Ccs)2_ aTo-_](#_R) sin _ }

+ PAaoCf X(SG + _){Ccs(XA- 3c b -- Ccs)_V + Ccs(XA- 3C b -- Ccs)e_ 2

3 c -- 4-_--(2Cb Ccs)Ccs_V,x](/_R ) cos+ [Ccs(XA -- _- b CC$)_'-'_V,xJr Jr

3 C -- _-(2C b + Ccs)Ccs()](pE_R ) sin _ }+ [Ccs(XA--_- b Ccs)_ +

1 1 c /(_2T10(_ 1 2 2T4
+ PAaoC,x2r(% + ccsXXA- _cb - T cs," _ - _-(cb + Ccs)£_To _]

+ PAaoCf X2(0G Jr _)[2Ccs(XA _ 4-3Cb -- CCS)_2 Jr -_(2C b Jr Ccs)Ccs_r_2]} (3.120)

From Eq. (3.96) the aerodynamic hinge moment per unit span in the "5" system is given

by

qAhx5 = Cf(MhNc + MhC)

where the multiplicative scaling factor Cf has been used to account for the over-prediction

of the aerodynamic hinge moment by 2D quasisteady aerodynamics. Substituting Eqs.

(3.72) and (3.73) into the previous expression yields:

CI
qAhx5 -- 4 PA(Cb + Ccs)2{U'_0G + _)T12 - UTUpT12

+ [-_-(c b + 3Ccs)-- XA](T12 -- T4)UT((_G + _)
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_{Cb + Ccs)(2T 9 + T1)UT(_) G + _) + 1T13(c b + Ccs)2(_)G + _)

^U 2 T15
Jr- 2_-(Cb 4- Ccs)[U P - UZ(_ G + _)]T 1 + z T--_-o O

T2" 14__(2Cb 3Ccs)-_--(T12-- T4)UT6
-- (C b+ Ccs a)--a_oUT 5 4- 4- _o

--_-(Cb4- Ccs)2_a_ -}

Substituting the expressions for UT and Up given by Eqs. (3.88) into the above expression

yields:

qAhx5 :

PACt(Cb + Ccs)2{ _ __(Cbl + Ccs)_/T1 + 1_/WT12 + __e_WT12 + .._/()._R)T1 2

+ ___e_Q(,;_) R)T1 2 1- -_(o b + Ccs)2(_)G + _)T13

+[_-WV,xT12 + -_-V,x(}._)R)T12 + _-v(w, x +/_p)T1 2 + 41---e')(W,x +/_p)T1 2

1 T2 _( C b 4-+ _(c b + Ccs)_-E-oo 6 - Ccs)W,×T1 ](,uE_R) cos

+[-_(XA--_- blc-_-ccsXT12-T4X_)G+_)

+ 18--(cb + Ccs)(2T 9 + T1X_ G + _)+ -_-WT1 2 - vTlS6
a o

+ _-()v(W.x + _p)T12 + _--(}-_R)T1 2 - 1-_6 2Cb + 3Ccs Ta)_o6_

T_ ,I

- e_) '_ 6 + -_(c b + Ccs)g_(w,x +/_p)T_](IL_R) sin t_
a o

+ [- V.x_o5 6 + _(w, x +/_p)T12](/_R) 2 COS_ sin_
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+ lV,x(W, x + j_p)T12(/2_2R)2 cos2_ 1 T15 _(/_R)2 sin2¢}
2 ao

1 _/2_ 1 -
+ pACt (Cb + Ccs)2(SG + (J)){-_-(C b + Ccs)VT1 -- -_- 112 - -_-e_"_vT12

1 e2_22T12
4

1
+ [-_ Cb+ Ccs)V'xT1 - 1---vv2'xT12 - -2-e_2v'xT12

1
+ -_c b + Ccs)_T1](/l_R)cos

1 v _ __(Cb + Ccs)QV,xT1 __(;)W/_pT12 lv+ [ - _-Qv ,xT12 + - -_- T12

1 [)uT12 _ __e_T12](/2QR) sin2

Iv T ....  v,x2T12(. R)2---_ ,x 12[/_}'zlX) COS_ sin_--

-- _-T12(HQR) 2 sin2_}

+ PACt (Cb + Ccs)2X{_(XA--_- blC -- 3ccsXT12 - T4)Q(_)G + _)

1
+ _(Cb + Ccs)(2T9 + T1)_)(_)G + (_)+ 1_WT12

_ _V T15ao_ + 41---_2v(W,x+/_p)T12 + ¼D().{)R)T12

I
(2Cb + 3Ccs)Q_q22___T.. _ e_ 2 TlS &

16 % -_o

+ [-QV,x-_o5 6 + l{)(w, x +/_p)T,2](/a£)R) cos _

-Q "_(#QR) sin_}
ao
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12 .___2W_pT12 .___/T12+ PACf (Cb + CCs)2X(_G+ _)[ -- -_-_ VV,xT12 +

-- 1_2uT12 -- le_2T12

AI

-- -L_V,xT12(/_R ) cos _ - --' _T12(/_R) sin _]
2 2

,2 2_2 T151
- mpACf(Cb + Ccs) X __,t o2"

1
4pACT (cb + Ccs)2X2(_G + _)_2T12

(3.121)

where

T15 = T5 + Tlo(T12 - T4)

T16 = Tll(T12- T4)

3 _ 2XA)T1T17 = TT(c b +Ccs)+ (yCb

3 _ 2XA)T4
T18 = T8(cb + cos) + (_-Cb

The distributed aerodynamic loads acting on the control surface can be transformed

from the "5" system to the "3" system, in which the equations of motion are formulated,

using the coordinate transformation defined in Chapter 2. The distributed aerodynamic

force acting on the control surface can be expressed in the "3" system as:

A /% A

PAc = PAcx3 ex3 + PAcy3 ey3 + PAcz3 ez3

where

PAcx3 = -- V,x PAcy5-- W'x PAcz5

PAcy3 = PAcy5

PAcz3 = -- V,xW,x PAcy5 + PAcz5

(3.122a)

(3.122b)

(3.122c)
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Similarly, the distributed aerodynamic moment due to the control surface can be expressed

in the "3" system as:

A A A

qAc = qAcx3 ex3 + qAcy3 ey3 + qAcz3 ez3

where

qAcx3 = qAcx5 (3.123a)

qAcy3 = V,x qAcx5 (3.123b)

qAcz3 = W,x qAcx5 (3.123C)

3.5 DAMPING LOADS

The structural damping present in the system is assumed to be of a viscous type. The

structural damping is assumed to act on the blade only. The representation of the struc-

tural damping presented below is adopted from Ref. 38. The distributed damping force

acting on the blade is defined as

/k A

-PD = -- gSL _ ey3-- gSF W ez3 (3.124)

Similarly, the distributed damping moment acting on the blade is defined as

qD = --gsT_ex4

which can be expressed in the "3" system as

• A A A

-qD = -- gST ¢(ex3 -- V,x ey3 -- W,x ez3) (3.125)
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3.6 TOTAL DISTRIBUTED LOADS

The total distributed loads are obtained by summing the inertial, gravitational, aero-

dynamic, and damping contributions.

The resultant distributed force acting on the blade is given by:

pb= i,o + + + (3.126)

which can be expressed in the "3" system as:

A A A

Pb = Pbx3 ex3 + Pl_y3 ey3 + Pbz3 ez3

where

Pbx3 = Plbx2 + PGbx2 + _p (Plbz2 4- PGbz2)

-- V,x PAby5 -- W,x PAbzS (3.127a)

Pby3 = Plby2 4- PGby2 4- PAby5 -- gSL _/ (3.127b)

Pbz3 = -- _p (Plbx2 4- PGbx2) 4- Plbz2 4- PGbz2

-- V,xW,x PAby5 4- PAbz5 -- gSF W (3.127c)

The total distributed moment acting on the blade is given by:

which can be expressed in the "3" system as:

A A A

qb = qbx3 ex3 4- qby3 ey3 Jr- qbz3 ez3

where

qbx3 = qlbx2 + qGbx2 4-/Jp(qlbz2 4- qGbz2) Jr qAbx5 -- gST

qby3 = qlby2 + qGby2 + V'x qAbx5 + gST V,x (_

(3.128)

(3.129a)

(3.12gb)
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qbz3 ----- -- J_p (qlbx2 -F qGbx2) t- qlbz2 -'F qGbz2 -]- W,x qAbx5

+ gST W,x

The resultant distributed force acting on the control flap is given by:

which can be expressed in the "3" system as:

where

Pcx3 -= Plcx3 + PGcx3 + PAcx3

Pcy3 = Plcy3 + PGcy3 + PAcy3

Pcz3 ----- Plcz3 + PGcz3 + PAcz3

A A A

Pc ----- Pcx3 ex3 -F Pcy3 ey3 -F Pcz3 ez3

(3.129c)

(3.130)

(3.131)

The resultant distributed moment about the elaslic axis of the blade due to the control

flap loads are given by:

-qc = qlc -{" qAc + qGc

which can be expressed in the "3" system as:

A A A

-qc = qcx3ex3+ qcy3ey3+ qcz3ez3

(3.132)

(3.133a)

(3.133b)

(3.133c)

(3.134)

where

qcx3 = qlcx3 + qGcx3 + qAcx3

qcy3 = qlcy3 + qGcy3 + qAcy3

qcz3 = qtcz3 3"- qGcz3 Jr- qAcz3

The resultant distributed moment about the control flap hinge is given by:

qn = qlh + qon + qAh
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Chapter IV

OFFSET-HINGED SPRING RESTRAINED BLADE MODEL

In this chapter, the equations of motion of an isolated hingeless rotor blade are formu-

lated using the offset-hinged spring restrained blade model. This model is used in the first

stages of this study to gain physical insight into the problem of controlling helicopter vi-

brations using an actively controlled flap mounted on the blade. The key insights learned

in the first stage are then used as a foundation for the second stage of this study, which

focuses on practical issues concerning the control flap implementation.

4.1 THE BLADE MODEL

The offset-hinged spring restrained blade model was first used in Ref. 37 to study the

flap-lag dynamics ofa hingeless rotor blade in hover. Since then many good models have

been derived[50,53] based on the spring restrained model to study the flap-lag-torsion

dynamics and stability of hingeless rotor blades in forward flight. The simple spring re-

strained blade model is particularly convenient for developing explicit equations of motion

for the blade dynamics. Valuable insight can be gained by examining the coupling between

the flap, lead-lag and torsional dynamics, which is possible when an explicit formulation is

used. Though the spring restrained blade model ofa hingeless blade is not as refined or

accurate as a fully flexible blade model, it is very useful for performing trend type studies.

The essential features of the offset-hinged spring restrained blade model are discussed in

the next section.

In the offset-hinged spring restrained blade model, the flexibility of the blade is con-

centrated at a single point called the hinge offset point, located a distance e from the hub;

the blade outboard of the root is assumed to be completely rigid. An orthogonaltriad of

torsional root springs, oriented along the axes of the "S" system as shown in Fig 2, is used

to represent the flexibility of the blade in flap, lead-lag and torsion. It is assumed that the
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orientationof the triad of root springs does not change as the blade deforms. This as-

sumption is consistent with the modeling of an hingeless rotor blade which, being

cantilevered at the blade root, undergoes no displacement or rotation at lhe root of the

blade.

The elastic deformation of the spring restrained blade consists of the rigid rotation of

the blade about the root springs in flap, lead-lag and torsion. The following deformation

sequence is adopted in this study: 1) a flap rotation by the angle/_ clockwise about the

Y3 axis; 2) a lead-lag rotation by the angle ( counter-clockwise about the z3 axis after is has

been rotated by the angle j3, and 3) a torsional rotation by the angle _ counter-clockwise

about thex 3 axis after it has been rotated by the angle_ and Ihen(. These three angles

completely describe the elastic deformation of the offset-hinged spring restrained blade,

and thus represent the blade degrees of freedom for this blade model.

The elastic restoring moments about the blade root are obtained by resolving the total

rotation resulting from the above sequence of rotations into components along the axes

of the torsional root springs and then multiplying each component by the negative of the

appropriate spring stiffness. In this study, the stiffnesses of the torsional root springs are

selected so that the resulting uncoupled non-rotating frequencies of the rigid blade in flap,

lead-lag and torsion match the corresponding uncoupled first non-rotating frequencies of

the fully elastic blade.

The elastic restoring moments are combined with the moments about the blade root

due to the distributed inertial, gravitational, damping and aerodynamic loads on the blade

to obtain the resultant moment about the blade root. The equations of motion for the

offset-hinged spring restrained blade model are obtained by setting this root moment to

zero. This yields a set of three fully coupled nonlinear ordinary differential equations of

motion, which are associated with the flap, lead-lag and torsional degrees of freedom of

the blade. The resulting equations are nonlinear due to the assumption of moderate de-

flections, which introduces geometric nonlinearities into the expressions for the inertial,

aerodynamic and structural loads, and couples the equations of motion as well.
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4.2 DISTRIBUTED LOADS

General expressions for the distributed loads on the blade have been developed in

Chapter 3 in terms of the three displacement quantities u, v and w and the rotational

quantity_b. Before these loads can be integrated along the span of the blade, they must

be expressed entirely in terms of the blade degrees of freedom of the spring restrained

blade model, namely the flap angle_,the lead-lag angles r and the twist angte_. The re-

lationship between these two sets of variables can be determined by comparing the posi-

tion vector of a point on the elastic axis of the blade described in terms of the blade

degrees of freedom for the rigid blade model with the position vector defined in Chapter 3

in terms ofu, vand w. In Chapter 3 the position vector of an arbitrary point on the elastic

axis of the deformed blade was shown to be given by

^ A A ^ (3.82)rEA = eex2+(x+ U) ex3+Vey 3+wez3

For the offset-hinged spring restrained blade model, the position of an arbitrary point on

the elastic axis of the deformed blade can be expressed as:

A A

rEA = eex2+Xex4 (4.1)

Transforming the unit vector ex4 to the "3" system using the appropriate coordinate trans-

formation defined in Chapter 2 yields:

A A A A

X ex4 = x ex3 + _x ey 3 +/_x ez3 (4.2)

Substituting the above expression into Eq. (4.1) yields:

A A A A

rEA = eex2+Xex3+_xey 3+_xez3

Comparing the previous expression with Eq. (3.82) reveals that

v = _x , w = _x (4.3a)

from which it follows immediately that

v,x = _ , W,x = /_ (4.3b)
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The axial displacement u(x) due to the flap and lead-lag angular displacements, ,g and _,

can be expressed as:

1 JOrx(_2+/_2)dx = _ ___(_2+ #2)Xu(x) = 2 (4.4)

Expressions for the distributed loads acting on the spring restrained blade model are

obtained by substituting Eqs. (4.3) and (4.4) into the expressions for the distributed loads

acting on the fully elastic blade model formulated in Chapter 3.

4.3 ROOT MOMENT DUE TO BLADE LOADING

The moments about the blade root due to the distributed inertial, gravitational and

aerodynamic loads acting on the blade are obtained by integrating the distributed loads

along the span of the blade. Since the blade outboard of the root is rigid, the geometry of

the deformed blade is unchanged from the geometry of the undeformed blade, and is

therefore knowna priori. Furthermore, the distributed loads are separable in terms of their

spatial and time dependencies, consisting of products of the blade degrees of freedom

,fi, ( and _, which are functions of time only, and known x-dependent quantities, such as

the mass, pretwist and principal cross-sectional inertia distributions of the blade. This

separability permits the explicit integration of the distributed loads along the span of the

blade, thereby eliminating the spatial degree of freedom in the equations of motion.

The integration along the blade span can be expressed symbolically as

f0 L b _ f0 L b A
_IR = qb dx + x ex4 x Pb dx

+ qc dx +
Xcs

A

X e;<4 x Pc dx (4.5)

which can be expressed in the "3" system as:

/% /% A

M R = MRx3 ex3 + MRy3 ey3 + MRz3 ez3 (4.6)

96



The evaluation of the various integrals appearing in Eq. (4.5) is too lengthy to be presented

here, but is described in detail in Appendix C. The substitution of Eqs. (4.3) and (4.4) into

the expressions for the distributed loads derived in Chapter 3, and the integrations in Eq.

(4.5), are performed explicitly using the symbolic manipulation program MACSYMA. The

application of MACSYMA in evaluating explicit integrals is described in Appendix B.

4.4 ELASTIC RESTORING MOMENTS

The elastic restoring momenls are obtained by resolving the total rotation of the rigid

blade about its root into components along the axes of the torsional root springs and then

multiplying each component by the negative of the appropriate spring stiffness. The

torsional root springs are oriented along the axes of the "S" system as shown in Fig. 2.

The orientation of the triad is oriented by pilot input at an angle RCSGr about the x3 axis,

as shown in Fig. 2, where 0Gr = _gG(X= 0) represents the total geometric pitch angle at the

blade root. The elastic coupling parameter RC was introduced in Ref. 50 to vary, in a

simple manner, the amount of flap-lag elastic coupling present in the model. When

R c = 1.0, for example, there is full elastic coupling and the orientation of the rool springs

changes as the pitch of the blade changes in such a manner as to always remain parallel

to the principal axes of the blade at the blade root. This case models a hingeless rotor

system with all of the flexibility outboard of the pitch change bearing. When R C = 0the

orientation of the root springs does not change as the blade pitch changes. This case

models a rotor system with all the flexibility inboard of the pitch change bearing. Values

of RC between 00 and 10 represent varying amounts of flap-lag elastic coupling present

in the helicopter model.

It is assumed that the orientation of the root springs does not change with the blade

deformation. This is to be consistent with the modeling ofa hingeless rotor blade, which

is cantilevered at the blade root. The cantilevered boundary condition specifies a zero

slope at the cantilevered end.
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Inorderto evaluatethe elastic restoring moments provided by the triad of root springs,

it is necessary to calculate the total rotation about the blade root due the flap rotation /_,

the lead-lag rotation _, and the torsional rotation _ about the blade root. The evaluation

of the total rotation is facilitated by the use of the transformation matrices defined below.

The transformation matrix associated with a rotation by the angle/_ clockwise about the

Yi axis is given by

°[T#] = 1 0 (4.7)
O 1

The transformalion matrix associated with a rotation by the angle _ counter-clockwise

about the z, axis is given by

[T_] = # I
0

It should be noted that it has been assumed that/_ and _ are small angles.

(4.8)

II is easily verified that, within the context of the small angle assumption, the inverse

transformations can be obtained by matrix transpose

[T#] -I = [T#] T (4.9a)

[T_] -I = ITs] T (4.9b)

Assuming the angular rotations to be small, which is consistent with the ordering

scheme used in this study, they may be treated as vectors oriented in the direction about

which the rotation occurs. Using the transformation matrices defined above, the total ro-

tation vector can be expressed in the "3" system as:

(4.1o)
_ry3( = --t-[m/_] T Jr-rm/_] FT_] _0__rz3J
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where the use ofEq.(4.9) has been used to define the inversetransformalions. The neg-

ative sign on the flap angle /3 in the above expression is due to the fact that ,B has been

defined in this study as positive clockwise.

Carrying out the matrix multiplications yields:

0rx 3 : ¢-,B( (4.11a)

0ry 3 = - /_ 4- ¢_ (4.11b)

0rz 3 : _ 4- q_fi (4.11c)

The total rotation vector may be transformed to the "S" system using the appropriate

coordinate transformation defined in Chapter 2, yielding

rys( = Cos(Rc0Gr ) -- sin(Rc0Gr)|,_Or3y _ (4.12)

t#rzS] sin(RcOGr) CoS(RcOGr) J[Or3z]

Carrying out the matrix multiplication, the componenls of lhe total rotation about the blade

root in the "S" system are:

0,xs - ¢ -/%:

t)ry S = ( -- [_ + qS_) CoS(Rc/)Gr) + (_ + ,/,[_) sin(Rc,qGr)

Orz s = (_ + ¢,G) cos(Rot)Or)- ( --/3 + (_) sin(Rc0Gr )

(4.13a)

(4.13b)

(4.13c)

Now that the total rotation vector due to the sequence of rigid rotations about the blade

root has been resolved into components along the axes of the "S" system, the elastic re-

storing moment about the blade root in the "S" system can be expressed as:

MEzS) K{ [.0rzS. }

(4.14)

where K#, K{ and K_ are the torsional spring stiffnessess in flap, lead-lag and torsion re-

spectively.

Carrying out the matrix multiplication yields:
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MEx s = -Kc,(q_-fl()

MEy s = -- Kfl[( -- fl + (q_) CoS(RcOGr) + (( + fl_) sin(RceGr)]

MEz s = -- Kr[(_ + flq_) CoS(Rc0Gr)-- ( -- fl + (_) sin(Rc0Gr)]

(4.15a)

(4.15b)

(4.15c)

Finally the elastic restoring moment at the blade root may be expressed in the "3"

system, in which the dynamic equations of motion are formulated, by transforming them

from the "S" system to the "3" system using the appropriate coordinate transformation

defined in Chapter 2

MEy3( = 0 CoS(RcOGr) -- sin(Rc0Gr) ME S (4.16)
MEz3J 0 sin(Rceor ) CoS(Rc_Gr ) MEZS)

Carrying out the matrix multiplication yields the components of the total elastic restor-

ing moment about the blade root in the "3" system:

MEx 3 = -- K¢,(_ - fl_) (4.17a)

MEy3 = -- [K/_ COS2(RcOGr) + K_ sin2(Rc_Gr)]( - fl + _(_)

+ (K; - K/_) cos(Rc0or) sin(Rc0orX( + figS) (4.17b)

MEz3 = -- [K; COS2(RcOGr) + Kfl sin2(Rc0cr)](( + fl_)

+ (K_ - K;_) cos(Rc0or) sin(Rc0GrX - fl + (¢) (4.17c)

The above expressions are identical to those derived inRefs. 38, 50 and 53. It is interesting

to note from the above expressions thal for a "matched stiffness" rotor blade (i.e.

Kf_ = K{) that there is no elastic coupling even for R C > 0

The spring stiffnesses Ke, K# and K.; are usually selected[38.50,53] such that the non-

rotating flap, lead-lag and torsional frequencies of the rigid blade match the corresponding

fundamental non-rotating flap, lead-lag and torsional frequencies of the actual blade which

is being modeled. Denoting ca/t, u._( and e_ as the fundamental non-rotating frequencies

100



of the bladein flap,lagandtorsion,respectively,the torsionalstiffnessesaredefinedas

follows:

K/_= co_(Ib4-Ic) (4.18a)

K¢ = c0_(Ib + Ic) (4.18b)

2
K_ = co,#(Jb + Jc) (4.18c)

where Ib and Ic represent the flapping inertia about the blade root of the blade and control

surface, respectively, and Jb and Jc represent the polar moments of inertia of the blade and

control surface, respectively. The above expressions, without the control flap inertias

terms, have been taken from Ref. 50.

Since the blade configuration is usually described by the fundamental rotating fre-

quencies, it is desirable to define the relationship between the rotating frequencies, which

characterize the blade configuration, and the non-rotating frequencies, which are used to

obtain the spring stiffnesses. For the offset-hinged spring restrained blade model used in

this study, the fundamental rotating frequencies of the blade can be expressed as:

2 2 _2 xbe (_u_ c,_)sine(Rc0or)
Q)F1 ---- ('off 4- 4- Ub&-'_ 2 _ 4- --

2 _+ Mb02 Xbe , (ej,! e,_)sin2(RCOGr)
r.DL1 = ib 4- --

2 2 Imbr3- Imbr2 (4.19c)
(Z)T1 : _z)(p 4- Q2 Jb

where

(4.19a)

(4.19b)

J0Lb(IMB2 COS20pt 4- IMB 3 sin2/_)pt) dx = Imbr2

JlLb(IMB2 sin2_lpt + IMB 3 COS2_pt) dx = Imbr3
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Equations (4.19) were obtained from the linearized rotating free vibration problem for the

offset-hinged spring restrained blade modelr38,50,53].

Modifying Eqs. (4.19) to include the control flap inertia yields:

21 = _+_2+ Mb_2
Xbe Xce

+ Mc _2_
Ib + Ic I b + Ic

+ (_ -- (.0_,) sin2(RCSGr) (4.20a)

2 = Lo_ Jr- Mb_ 2 Xbe Xce
('OL1 Ib + I"--'_+ Mc-(_2 I b + I"-'----_

+ (_ -- (.o_) sin2(Rc0Gr) (4.20b)

2 _,_2 Imbr3- Imbr2 (4.20C)
LOT1 = (.,0_ 4- Jb + Jc

where M c is the control flap mass, and x c is the distance to the mass centroid of the control

flap from the blade root. The above expressions have been obtained from the linearized

rotating free vibration problem for the offset-hinged spring restrained blade model with a

partial span trailing edge flap. These expressions were obtained using MACSYMA.

4.5 STRUCTURAL DAMPING LOADS

The structural damping incorporated in this analysis is of a viscous equivalent type, and

is identical to that used in Refs. 38, 50 and 53. The damping moment about the blade root

in the "3" system is defined as:

A A A

WID = MDx 3 ex3 + MDy 3 ey3 + MDz 3 ez3

where

MDx 3 = -- C_) _) (4.21a)

MDy 3 = C/_,B (4.21b)
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MDz 3 = -- C_ _ (4.21c)

C#, C_ and Ce are the damping coefficients in flap, lead-lag, and torsion, respectively.

4.6 EQUATIONS OF MOTION OF THE ISOLATED BLADE

The dynamic equations of motion of an isolated blade for the offset-hinged spring re-

strained blade model are formulated by summing the moments about the blade root and

setting this sum to zero. The total moment about the blade root due to the inertial,

gravitational and aerodynamic loads is countered by the elastic restoring moment and the

viscous damping moment about the blade root. Summing the moments about the blade

root and equating the resultant to zero yields:

ME + _ID + _IR = _ (4.22)

Substituting Eqs. (4.6), (4.21) and (4.21) into the previous expression, and evaluating each

component to zero, yields the equations of motion for the offset-hinged spring restrained

blade model:

Equation

- [K# COS2(Rc0Gr) + K_ sin2(Rc0or)]( -- ,6 + _(_)

+ (K{ - K#) CoS(RcOGr) sin(RcOGrX_ +/J(_)

+ C#_ + MRy 3 = 0

Equation

- [K..; cos2(Rc0or) + K# sin2(RcOGr)](_ + [{q_)

+ (K: - K#) CoS(RcOGr) sin(Rc0GrX -- fi + (0)

(4.23)

-C._+ MRz 3 = 0 (4.24)
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Torsion Equation

- K¢(q_ -/_)- C_ _ + MRx3 = 0 (4.25)

Explicit expressions for MRx3, MRy3 and MRz 3 are developed in Appendix C using

MACSYMA.
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Chapter V

FULLY ELASTIC BLADE MODEL

In this context, the blade is considered to be a deformable slender rod, made of linearly

isotropic, homogeneous material. The analysis is restricted to the case of small strains

and finite rotations (i.e. moderate deflections). In this study the Bernoulli-Euler hypothesis

is assumed to apply. Furthermore, it is assumed that strains within the cross-section can

be neglected.

The structural part of the model is taken from Ref. 46. In that reference a set of non-

linear parlial differential equations of motion was formulated for an isotropic blade with

fully coupled flap-lag-torsional dynamics undergoing moderate deflections. The distributed

inerlial, gravitational and aerodynamic loads acting on the blade have already been de-

veloped in Chapter 3. These loads have been formulated in terms of the elastic displace-

ments u, v, and w and the elastic twist _. The inextentionalily assumption is used to

eliminate the axial deformation u(x) from the expressions. For an inextensional beam

cantilevered at x=O, the axial displacement at a spanwise location x is given by

u(x)= - _- (v2,×+ W2,x)dx (5.1)

This relation is frequently denoted as the shortening effect due to bending deformation.

The spatial dependence of the equations of motion is removed using Galerkin's method

of weighted residuals. Two torsional, two lead-lag, and three flap free vibration modes of

the rotating blade are used to represent the blade flexibility. The rotating mode shapes

are obtained using the first nine exact nonrotating modes of an uniform cantilevered beam.
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5.1 EQUATIONS OF MOTION OF THE FLEXIBLE BLADE

The formulation of the mathematical model for the fully elastic blade problem is based

upon a set of consistently derived, non-linear partial differential equations describing the

coupled flap-lag-torsional dynamics of an isolated rotor blade in forward flight, formulated

in the undeformed reference frame assuming moderate deflections. A general version of

these equations, with the distributed loads left in general symbolic form has been pre-

sented in Ref. 47. The general blade aeroelastic equations in forward flight presented in

Ref. 47 are based on the formulation of Ref. 46.

The equations of equilibrium which serve as the starting point in this study are given

by Eqs. (5)-(7) ofRef. 47and are presented below. These equations were formulated using

the deformation sequence lag-flap-torsion.

Flap Equation

-- [(EI{_ - EI_) sin 0 G cos 0G(V,xx + 2¢W,xx) + (EI_,; -- El_t/)_V,xx cos 20 G

+ (ElCr sin20G + EI_ cos20G)W,xx

-- TXllb( sin 0 G + ¢ COS 0G)],xx

+ (GJbq_'xV'xx)'x + (WxT)'x - (V,xqx3),x + qy3,x + Pz3 = 0 (5.2)

Lag Equation

- I-(EI_{ cos20G + EI,m sin20G)V,xx + (EI;_ - EI,m_W,x x cos 20 G

+ (El_r - Elf/0) sin 0 G cos 8G(W,xx -- 2_V,xx)

-- TXllb( cos 0 G - _ sin 0G)],xx

-- (GJb_'xW'xx)'x + (V'xT)x + (W,xqx3),x - qz3,x + Py3 = 0 (5.3)

Torsion Equation

[GJb(qS. x + V,xxW,x)]. x

+ (EI,_ - Elnr/)[(V2,xx - W2,xx) sin 0 o cos 0 o - V,xxW,x x cos 20G]
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+ TXllb(w,xx COS8G -- V,xx sin 8G)

+ qx3 + V,xqy3 + W,xqz3 = 0 (5.4)

where Xll b is the offset of the tension center from the elastic axis, and

-_ ^ ^ ^ (5.5a)= Px3 ex3 3- Py3 ey3 + Pz3 ez3

^ ^ (5.5b)= qx3 ex3 + qy3 ey3 3- qz3 ez3

represent the total distributed force and moment, respectively, acting at the elastic axis of

the blade, expressed in the undeformed reference frame ("3" system).

The quantity GJ b is the torsional stiffness of the blade

Gj b = IA G (y2 + Z2) dy ° dz ° (5.6)

and EI_ and El_ represent the principal bending stiffnesses of the blade cross-section

= IA E _2 dA (5.7a)EI_

= IA E ,12dA (5.7b)EI_

The boundary conditions associated with Eqs. (5.2) - (5.4) are:

at x = 0 v= w = _ = v, x= w, x= 0 (5.8a)

at x = Lb : V,xx = V,xxx = W,xx = W,xxx = _),x = T = 0 (58b)

The first set of boundary conditions is associated with the cantilevered root at x = 0, and

the second set is associated with the free end at x = L b.

The equations of motion represented by Eqs. (5.2)-(5.4) were formulated using the

deformation sequence lag-flap-torsion. This differs from the deformation sequence flap-

lag-torsion adopted in this study in the derivation of the distributed loads acting on the

blade. To formulate a consistent set of equations it is necessary to adopt and maintain a
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single deformation sequence. Therefore, to avoid rederiving the distributed loads, a set

of equations analogous to Eqs. (5.2)-(5.4) is developed in this section for the sequence

flap-lag-torsion.

Equations (5.2)- (5.4) were obtained from a general set of expressions developed in

Ref. 46 in which the transformation from the undeformed to the deformed reference frame

was left in symbolic form. The transformation from the undeformed reference frame ("3"

system) to the deformed reference frame ("4" system) was represented symbolically as:

A A

:y4_ " Ls31_s21 S32s'_2 l_:J_:y3_ (5.1)

'_ez4J k.ezIJ

The general set of equations, based on this transformations, are represented by Eqs. (C-24)

of Ref. 46:

Equation

{My,× + (S12),xM x + [($32), x - S12(S31),x]Mz _ $23 Mz,x}, x

+ ($13 T),x - ($12 qx3),x + qy3,x 4- Pz3 = 0 (5.10)

-- {Mz, x 4-(S13),xM x 4- _-($23), x- S13(S21),x]My- $32 My,x}, x

4- ($12 T),x - qz3,x 4- ($13 qx3),x 4- Py3 = 0 (5.11)

Torsion E q_ualion

Mx,x 4- r(s21),x 4- S13(S23),x]My 4- [($31). x 4- S12(S32),x]M z

+ qx3 4- $12 qy3 4- S13 qz3 = 0 (5.12)

where

Mx = GJbt" (513a)

My = - Ely z _-y- Elyy K z + T ZA (5.13b)
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M z = Elzz Ky + Elyz Kz -- T YA (5.13C)

represent the components of the elaslic restoring moment acting on the cross-section of

the deformed blade. The bending stilfnesses are defined as:

Elzz = fA E (YA -- Y0)2 dY0 dz0

Elyz = fA E (YA -- Y0XZA -- Z0) dY0 dz0

Elyy = J'AE (ZA -- Z0)2 dy 0 dz o

The coordinate pair (YA, ZA) represents the coordinates of the area centroid of the blade

cross-section, i.e.

J'AY0 dY0 dz0 = YA AD
b

fAbZ0 dY0 dz0 = ZA Ab

where A b is the area of the blade cross-section.

For a symmetric blade cross-section:

Elzz = EI{( cos2/_G + El,7# sin28G (5.14a)

Elyz = (EI;_; - El_#)sin 0 G cos _G (5.14b)

Elyy = EI.;_ sin20G + Elrt# COS28G (5.14C)

Furthermore,

YA = Xllb COS _G " ZA = Xub sin e G

for a symmetric blade.
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ThequantitiesdenotedbyKyandKz in Eqs.(5.13)representthebendingcurvaturesof

the bladeand_ is therateof twist. Thesequantitiesaredefinedin Ref.54by:

A A A A

Ky = ey 4 • ex4,x = -- ex4 • ey4, x

A A ,'_ A

Kz = ez4"ex4,x = _ ex4"ez4,x

,% A A A

T = ez4"ey4, x = -- ey 4.ez4,x

The bending curvatures and the twist of the blade depend upon the transformation from the

undeformed to the deformed coordinate system. Making use of Eq (5.9), general ex-

pressions for the curvature and twist are

Ky = ($12),y + $23(S13), x (5.15a)

Kz = $32 (812), x 4- (S13), x (515b)

T = $31 (821), x 4- (823), x (5.15c)

A detailed derivation of the equations of motion for the deformation sequence lag-flap-

torsion represented by Eqs. (5.2)-(5.4) from the general expressions given by Eqs.

(510)-(5.12)and (5.15) is presented in Ref. 46. For this sequence the transformation from

the undeformed to the deformed reference frame is given by:

A /k

k.ez4_,' (w, x- _bV,x) -- (_ 4- V,xW,x) 1 _J Laz3.)

(5.16)

Using Eqs. (5.15), the expressions for the bending curvatures and twist for the case lag-

flap-torsion are:

Ky = V,XX+ _W,xx (5.17a)

_:z = W,xx- _V,xx (5.17b)

"r = _,x + V,xxW,x (5.17c)
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Theorderingschemehasbeenusedto neglectthe higherordertermsin theaboveex-

pressions. In Ref.46Eqs.(5.17)weresubstitutedintoEqs.(5.10)-(5.12)to obtainthe

equationsof motionrepresentedbyEqs.(5.2)- (5.4).

Forthedeformationsequenceflap-lag-lorsion,thetransformationfromtheundeformed

to thedeformedreferenceframeisgivenby:

[1< y4

,.ez4., (W,x-- q_V,x)

A

-- _ 1 J k.ez3J

Using Eqs. (5.15) the bending curvatures and twist for this case are:

(5.18)

Ky = V.xx + _bW,xx (5.19a)

K Z = W,xx -- (_V,x x (5.19b)

(5.19c)T = _'X--V'xW'xx

It is interesting to note that the expressions obtained for Ky and Kz are the same for the

two deformation sequences. Though the expressions obtained for the twist _ are not the

same, the leading orders terms are identical. This can be attributed to the fact that the only

differences between coordinate transformations given by Eqs. (5.16) and (5.18) are in the

$23 and the $32 terms.

Substituting the flap-lag-torsion coordinate transformation given by Eq. (5.18) and the

curvatures and twist given by Eqs. (5.19) into Eqs. (5.10)-(5.12) yields the following set of

equations of motion for the deformation sequence flap-lag-torsion:

Flap Equation

- [(EIc_; - EI,z_)sin _G cos _G(V.xx + 2_,W,xx) + (EIc_ - El_)<_V,xx cos 28G

+ (EI_,_sin20G + EI,7,7cos2/)o)W,xx

-- TXIIb( sin 8 G + _ COS _G)]xx

+ (GJDq_,xV,xx),x + (W,xT), x - (V,xqx3), x + qy3.x + Pz3 = 0 (5.20)
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Lag Equation

- [(EI_;E COS28G + EI_ sin20G)V,xx + (Else - El_)_W,xx cos 20 G

+ (EI_;_- El_r/) sin 0G cos 0G(W,xx -- 2¢V,xx )

-- TXllb( cos 0 G -- ¢ sin 8G)],xx

-- (GJb_'xW'xx),x + (V,xT),x + (W,xqx3),x - qz3,x + Py3 = 0 (5.21)

Torsion Equation

[GJb(¢, x -- V,xW,xx)], x

+ (EI_ - Elrt_/)[(v2,xx - W2,xx) sin 0G cos 8G - V,xxW,xx cos 20G]

H- TXllb(W,xx COS_)G-- V,xx sin 0G)

+ qx3 + V,xqy3 + W,xqz3 = 0 (5.22)

Comparing Eqs. (5.2)- (5.4) with Eqs. (5.20) - (5.22) reveals thal the structural part of the

flap and lag equations are identical for the two deformation sequences. This can be attri-

buted to the fact that the expressions for the curvatures of the blade are the same for the

two deformation sequences. The only difference evident in the structural part of the torsion

equations given by Eqs. (5.4) and (5.22) is in the first term. The quantity in parenthesis

multiplied by the torsional stiffness of the blade GJ b in each of these equations can be re-

cognized as the twist of the blade r, which has been shown to be different for the two de-

formation sequences. It should be noted that the boundary conditions given by Eqs. (5.8)

are also the same for the two deformation sequences. The boundary conditions together

with (5.20)- (5.22), are used in this study to develop explicit expressions for the equations

of motion of the flexible blade.

The tension T is eliminated from the flap, lag and torsional equations in a manner

similar the approach used in Ref. 47 where, after neglecting higher order lerms, the axial

tension equation is expressed as
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T,x = - Plx3 (5.23)

where Plx3 represents the axial load at the elastic axis of the blade due to the rotation of

the blade. Integrating Eq. (5.23) with respect to x and using the boundary condition

T(x = Lb)= 0 yields:

T(x) = - T, xdx = - T, xdx- T, xdx]

_-L'0,  0x-b,x 0x i,.,,
The system of coupled partial differential equations of motion represented by Eqs.

(5.20)-(5.22) is transformed to a system of ordinary nonlinear ordinary differential

equations using Galerkin's method to eliminate the spatial variable x. In this study, thefirst

two torsional modes, the firsl two lead-lag bending modes, and the first three flap bending

modes of a rotating uniform cantilevered beam are used as comparison functions, i.e.

3

w = _qw,(0)W,(x) (5.25a)W

I=1

2

v = _-_qv,(_')V,(x) (5.25b)V

i=1

2

¢ _ ¢ = ,___jq_,(_)q),(x) (5.25c)
I=1

where Wt(x ), V,(x) and q),(x) represent the i-th flap, lead-lag and torsional uncoupled rotat-

ing mode shape, respectively. The participation coefficients q01, qo2, qvl, qv2, qwl, qw2

and qw3 represent the seven generalized degrees of freedom of the fully flexible blade

model.

The uncoupled rotating mode shapes are generated using the first nine exact modes

of a nonrolating uniform beam. The analytical expressions for the nonrotating mode

shapes are taken from Ref. 1. The integrals required to calculate the mass and stiffness
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matrices of the free-vibration problem for the rotating beam are evaluated numerically

using 20-point Gaussian quadrature. This free vibration problem is solved separately, be-

fore embarking on the aeroelastic computations, and thus it essentially represents a pre-

processing stage.

To apply Galerkin's method the error residuals associated with the use of Eqs. (5.25) in

the equations of motion must be formed. These are then multiplied by the appropriate

mode shape and integrated over the span of the blade. Galerkin's method consists of

setting each of these integrals to zero and solving for modal participation coefficients,

which represent the generalized coordinates of the problem.

Multiplying each error residual by the appropriate mode shape and integrating over the

span of the blade yields:

Flap Equation (i = 1,2,3)

fob( [(EI_;_; El,v) e G COS + 2_W,xx )
_G(V,xxsin

+ (El(( - EI,m)_V,xx cos 28G + (El(:; sin28G + EI_ COS28G)W,xx

-- TXllb( sin _G + _) COS 8G)].xx

+ (GJb_,xV,xx + W,xT - V,xqx3 + qy3),x + Pz3} W,(x) dx = 0 (5.26)

Lag Equation (i = 1,2)

fLb{ -- [(Ely, + EI_ + (ElCr - El_)_W,xx cos 28oCOS2_G sin2/_G)_,xx

+ (Elrr - EIr/_) sin t_o cos 0o(W,xx -- 2,_V.xx )

-- TXllb( COS8G -- _ sin _)G)],xx

+ ( -- GJb_,x_V,xx + V,xT + w,xqx3 - qz3),x + Py3} V,(x) dx = 0 (5.27)

Torsion Equation (i = 1,2)
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0L"{ EGJb(_ ,x -- V,xW,xx)],x

+ (EI_{ - El_e)[(V2,xx - W2,xx) sin 0 G cos 0 G - V,xxW,xx cos 20G]

+ TXltb(W,xx cos 0 G -- V,xx sin 0G)

+ qx3 + V,xqy3 + W,xqz3} ,P,(x) dx = 0 (5.28)

~ _ _,where the tilde over the distributed loads indicates that v, w and given by Eqs. (5.25)

have been substituted into the expressions.

It is well known that when approximations such as Eqs. (5.25) are used to obtain ap-

proximations for the spatial derivatives of w, v and _, the quality of the approximations

deteriorates quickly as the order of the derivative increases. This is due to the fact that

with each successive spatial differentiation the errors inherent in the approximations are

amplified. Thus all spatial derivatives higher than second order are eliminated from Eqs.

(5.26)-(5.28) by integrating by parts twice using the boundary condilions given by Eqs.

(5.8).

Integrating the first integrand in Eqs. (5.27) and (5.26) by parts twice, integrating the

second integrand in Eqs. (5.27) and (5.26) and the first integrand in Eq. (5.28) by pads once,

and making use of the boundary conditions given by Eqs. (5.8), yields:

Flap Equation (i = 1,2,3)

Io. b{ _ [(El;{ - EIq_) sin 0 G cos 0G(V,xx + 2_W,xx)

+ (EI;r - El#v/)_V,xx cos 20 G + (El;; sin20G + El#r / COS20G)W,xx

-- TXlIb( sin 0 G + _ cos 0o) ] W,x x

+ (GJb_,xV,xx + W,xT - v,xqx3 + qy3)W,x + Pz3 W,} dx = 0 (5.29)

Equalion (i = 1,2)
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Lb( -- [(EI_ + EI_,I + (EI_ - EI,7,7_W,xx cos 28GCOS2_G sin2_G)_,xx

+ (El_r -- E1,1,1) sin e G cos eG(W,xx - 2_)'V,xx)

- TXllb( COSe G -- _ sin eG)] V_,x×

+ ( - GJb_,xW,xx + V,xT + W,x'qx3 - qz3)Vi,x + "Py3V,} dx = 0 (530)

Torsion Equation (i = 1,2)

jlLb { [ GJb(_) ,x - V,xW,xx)] (l)i,x

+ (EI.;r - El,m)[(V2,xx - W2,xx) sin 0o cos eG - V,xxW,xx cos 280] ¢,,

Jr- TXIIb(_V,xx COS e G -- V,xx sin/:)G) _,

+ (qx3 + V,xqy3 + w.xqz3)'b,} dx = 0 (5.31)

After carrying out the integrations over the blade span, the resulting set of equations

represent a set of seven second order nonlinear coupled ordinary differential equations in

terms of the modal participation coefficients qwl, qw2, qw3, qvl, qv2, q,_l and q¢,2. The

integrations of the error residuals over the blade span is performed using 20-point

Gaussian quadrature. The expressions forvv, vand_ given by Eqs. (5.25) are substituted

into the equations of motion but are not expanded. Instead, they are evaluated numerically

at each blade station required in the numerical integration procedure.

It is important to recognize thal up to this point the presence of a partial span trailing

edge flap on the blade span has not been explicitly accounted for in equations of motion

of the flexible blade represented by Eqs. (5.29)- (5.31). The incorporation of the effects due

to an actively controlled flap into the equations of motion is described in the next section.
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5.2 INCORPORATION OF THE CONTROL FLAP

An aerodynamic surface, modeled as a partial span lrailing edge flap located on lhe

outboard sections of the blade, as shown in Fig. 3, is considered to be an integral part of

the blade. The control surface has a chord length of ccs and a span of Lcs, with the inboard

edge located a distance Xcs from the blade root. The control surface is attached to the

trailing edge of the blade by a series of hinges located at a finite number of discrete points

(referred to as "hinge points") along the trailing edge of the blade. It is assumed that each

hinge is rigid in all directions except about the hinge axis, about which the control surface

rotates. The hinges adequately constrain the control surface cross-section toa pure rota-

tion in the plane of the blade cross-section.

The presence of actively controlled flap on the blade span must be appropriately in-

corporated into the equations of motion. In this study, the inertial, gravitational, and

aerodynamic effects are included, bul the structural effects of the control flap are neg-

lected. It is assumed that the additional stiffness provided bY the presence of a relatively

small control flap, on the outboard sections of the blade, has a negligible effect on the

blade deformation. The increase in the local bending and torsional stiffness of blade

cross-sections incorporating a trailing edge flap only directly affects the deformation of the

blade seclions oulboard of the inboard edge of the control flap; and since the curvature and

rate of twist of these blade sections near the tip are small compared to those at the root,

changes in the curvature and rate of twist due to control flap stiffness are assumed to be

negligible. Thus one may assume lhatthe presence of the flap has a negligible effect the

bending deformation of the blade: and the elastic twist is significantly altered only for

blades relatively soft in torsion. Despite its relatively small size. however, the inertial ef-

fects are included since the mass is located at a considerable distance from the hub and

thus can influence the blade root moment.

The effects of the control flap are accounted for by transferring the distributed loads

acting on the control flap to the elastic axis of the blade. The total distributed force acting

on the blade can be expressed as:
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I Pb for= for

k. -Pb for

O< X< Xcs

Xcs < X < Xcs + Lcs

Xcs + Lcs < x < Lb

(5.32)

where

A A A

Pb ---- Pbx3 ex3 + Pby3 ey3 + Pbz3 ez3 (5.33)

is the distributed force due to the blade loads, and

A A A

Pc = Pcx3 ex3 + Pcy3 ey3 + Pcz3 ez3 (5.34)

is the distributed force due to the presence of the control flap. The components of "Pb are

defined by Eqs. (3.127), and the components of pc are defined by Eqs. (3.131).

Similarly, the total distributed moment can be expressed as:

I_ qb for 0 < x < Xcs= b+qc for Xcs<X<Xcs+Lcs

qb for Xcs + Lcs< x < L b

(5.35)

where

A A A

qb = qbx3 ex3 4- qby3 ey3 4- qbz3 ez3 (5.36)

is the distributed moment due to the blade loads, and

A A A

qc = qcx3 ex3 + qcy3 ey3 -F qcz3 ez3 (5.37)

is the distributed moment due to the presence of a control flap. The components ofqb are

defined by Eqs. (3.129), and the components ofqc are defined by Eqs. (3.133).

Substituting Eqs. (5.32) and (5.35) into the Eqs. (5.29)-(5.31) yields:

Flap Equation (i = 1,2,3)

Lb{ - [(EI_ - EI_#) sin e G cos 8G(_,xx + 2_W,xx )
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+ (EIcr_ - Elrff/)_V,xx cos 280 + (El,;{ sin20G + El_/yt cos20G)W,xx

-- TXllb( sin 00 + _ cos 0o) ] Wi,xx

+ (GJb¢,xV,xx + W,xT - V,xqbx3 + qby3)Wi,x + Pbz3 Wi} dx

_Xc s + Los _ _+ [( - v,xqcx3 + qcy3) Wi.x + "Pcz3 Wi] dx = 0
Xcs

Equation (i = 1,2)

Lb{ -- COS20G + sin20G)V,xx + -- El_W,xx cos 20 G[(EI_ EI_,/ (EI_

+ (EI.;_ - Elnn ) sin 8 o cos 0o(W,xx -- 2¢V,xx)

-- TXub ( cos 0 G - (_ sin 0G) ] V_,xx

+ ( - OJb;,xW,xx + V.xT + W'xqbx3 -- qbz3) V,,x + Pby3VI} dx

'Xcs +Lcs _ _+ [(W,xqcx3 - qcz3) V,x + Pcy3Vi ] dx = 0

"Xcs

Torsion Equalion (i= 1,2)

fO Lb _ _
{EGJb(_b,x - V,xW,xx)] cb,,x

+ (EI z - El_?)[(V,xx 2 - W.xx 2) sin 0 G cos 8 G - V,xxW.xx cos 200] _i

+ TXltb(W.xx cos 00 - V.xx sin ,qo) cl)_

+ (qb×3+ ;,xqDy + dx

'Xcs + Lcs ....+ [(qcx3 + V,xqcy3 + W,xqcz3) ¢,3 dx = 0

XCS

(5.38)

(5.39)

(5.40)
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Chapter VI

METHOD OF SOLUTION

For both blade models, the system of nonlinear ordinary differential equations of motion

of the isolated blade can be represented by the following vector of size NDOF, the number

of blade degrees of freedom in the model:

-f'b(qb, qb, qb, qt, 3; _) = _ (6.1)

The veclor qb contains the blade degrees of freedom and qt is a veclor containing lhe lrim

variables oflhe problem. Each rowof-f" b represents the equation of motion associated with

a particular degree of freedom in qb

In the formulation of the equations of motion, the following quantities were assumed to

be known: the inflow ratio ;.; the rolor angle of attack _R ; the collective pitch angle _?0;the

cyclic cosine pitch input _1c; and lhe cyclic sine pitch input /:)is- These five quanlities col-

lectively represent the trim settings of the helicopter and appear explicitly in the blade

equations of motion. Therefore, the blade equations equations can not be solved until

these five quanlities have been determined.

The trim vector appearing in Eq. (6.1), defined as:

qt = (;-, _, 80, _1c, 81s} T (6.2)

represents the solution to a set of nonlinear trim equations which can be expressed in the

following vector form:

f_(qb, qb, qb, qt, 5; _) = O (6.3)

The system of trim equations represented by Eq (6.3) is obtained by enforcing the overall

force and moment equilibrium of the helicopter in steady, level forward flight. The vector

_ also contains an inflow equation. The process of determining the trim variables is re-
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ferred to as the "trim analysis". Before equilibrium can be enforced at the hub, it is nec-

essary to evaluate the forces and moments at the hub due to blade loading and due to the

forces and moments acting on the fuselage during forward flight.

6.1 ROTOR HUB LOADS

The total force and moment at the hub due to blade loading are obtained by integrating

the distributed loads along the span of the isolated blade in the rotating frame ("2" system),

transforming them to the non-rotating hub-fixed reference frame ("1" system), and then

summing the contribution at the hub from each blade in the rotor.

The total force and moment at the blade root due to the inertial gravitational, damping

and aerodynamic loads on the k-th blade, obtained by integrating the distributed loads

along the span of the blade, can be expressed in the "2" system by:

,% A. ,,'k

FR(_k ) = FRx2(_k)ex2+ FRy2(gk) ey2+ FRz2(_k) ez2

and

_lR(_k) = MRx2(_k) ex2 + MRy2(_k) ey2 + MRz2(_k) ez2

respectively, where

_k = _ + 2=(k- 1) (6.4)
N b

is the azimuth angle of the k-th blade.

Transforming the root force FR to the "1" system using the coordinate transformations

defined in Chapter 2 by Eq. (2.5), yields the force at the hub due to the k-th blade

FHk(_//k) = FHkxl(ligk)exl + FHt, yl(l/gk ) eyl + FHkzl(t,_k)'^ezl

where

FHkxl(_k) = FRx2(_k ) COS_k--FRy2(_k) sin_k
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FHkyl(_k)= FRx2(_k) sin _k 4- FRy2(_k ) COS _'1<

FHkzl(_k) = FRz2(_k )

The total force at the hub due to N b blades is obtained by summing the contribution of each

blade

N b

k=1

which can be expressed as:

A /k _,

FH(_) = FHxl(_)exl + FHyl(_)eyl + FHzl(_)ezl

where

N b

FHxl(_) = ,_[FRx2(_k)

k=l
COS _k -- FRy2(_k) sin _k]

N b

FHyI(_J) = Z[FRx2(_k) sin _k + FRy2(_k) COS _k]

k=1

N b

FHzl(_) = >--]FRz2(I_k )
k=l

The moment at the hub due to the k-th blade is given by:

MHk(_k)----- MR(I_k) 4- e ex2 x F'R(_//k)

which can be expressed in the "1" system as:

_lHk(_k) ^ MHkyl(l_k) eyl + MHkzl(_k) ezl_-- MHkxl(_k ) exl + ^ A

Carrying out the cross-product yields

MHkxl(_k ) = MRx2(_k ) COS _k -- [MRy2(_k)-- e FRz2(tflk)] sin tkk

MHky 1 = MRx2(_k ) sin I#k + [MRy2(_k )- e FRz2(I_k)] COS _Yk
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MHkzl(_k)= MRz2(_k )+ e FRy2(_k )

The total hub moment due to Nb blades is obtained by summing the contribution from each

blade

N b

k=l

which can be expressed as:

A A A

_tH(_) = MHxl(_)exl + MHyl(_)eyl + MHzl(_)ezl

where

Nb

MHxl(_) = _--_{MRx2(_k )cOs _k-- [MRy2(_k)-- e FRz2(_k) ] sin _k}

k=l

N b

MHyl(¢) = _--_,{MRx2(¢k ) sin Ck + [MRy2(l_k)-- e FRz2(l_k)] COS Ck}
k=l

N b

MHzl(_) = _-'_[MRz2(_k )+ eFRy2(t_k) ]
k=l

In this study it is assumed that there are four blades in the rotor (i.e. N b ---4) and

therefore the azimuth angle of the k-th blade is given by:

_k = _ +_(k-1)

6.2 ROTOR AERODYNAMIC THRUST

The total aerodynamic thrust produced by the rotor is required in the inflow equation

to calculate the inflow. The thrust of the rotor is defined as the total aerodynamic force

parallel to the rotor shaft, and is obtained by summing the contribution from each blade.

The z 2 axis is parallel to the shaft axis; thus the total aerodynamic thrust is given by:
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N b =4

TR = _ FAz2(_k) (6.5)

k=l

where FAz2(I,_k) represents the z 2 component of the aerodynamic force at the blade root of

the k-th blade.

6.3 FUSELAGE FORCES AND MOMENTS

The fuselage weight and the aerodynamic drag acting on the fuselage in forward flight

produce forces and moments at the hub which must be in equilibrium with the rotor hub

loads in order to maintain steady level flight. The forces and moments at the hub for a

helicopter with weight coefficient Cw and an equivalent fuselage flat plate drag area of

fCdt are described next.

6.3.1 Forces and Moments Due to Fuselage Weight

Given the weight of the helicopter,

W = Cw_R2pA(_2R2 (6.6)

the weight of the fuselage can be obtained by subtracting the weight of the rotor blades,

which are already accounted for in the gravitational loads. Thus the fuselage weight is

given by:

Wf-- CwR'R2pA()2R2 - gNbM b (6.7)

The weight acts in the direction of the gravitational vector, which is oriented parallel to

the negativez 0axis. The force due to fuselage weight can be expressed in the "1"system

as:

Fwf - Wt( sin :_R exl + cos :_R ezl)

where the angle ;(R is the trim rotor angle of attack.

(6.8)

124



This force is assumed to act at the fuselage center of gravity, which is located a dis-

tance ZFC below the hub along the negative z1 axis, and a distance XFC in front of the hub

along the negativex 1 axis, as shown in Fig. 5. The position vector of the fuselage center

of gravity relative to the hub center can be expressed as:

^ ^ (6.9)FFC = --XFCexl-- ZFcezl

The fuselage weight produces a pitching moment about the hub given by:

^ - (6.1o)
Mwfeyl = rFC× Fwf

Using Eqs. (6.8)- (6.10) yields:

Mwf = - Wt( - XFC COS _ZR 4- ZFC sin xR) (6.11)

6,3.2 Forces and Moments Due to Fuselage Drag

The parasitic drag acting on the fuselage is given by:

1 2 (6.12)
Df ---- _-pAVAf fCdf

where Vat represents the magnitude of the resultant air velocity employed in calculating

fuselage drag, and fCdf is the area used for the drag calculation. A value of

fCdf _ 0.01A R is frequently used in helicopter studiesF45], where A R = ,'tR 2 is the rotor

disk area.

Since, for a single rotor helicopter, a substantial portion of the fuselage is beneath the

rotor disk, the effect of rotor downwash is included in defining the total air velocity used in

the fuselage drag calculation. Thus the total air velocity is given by

It is assumed that the drag force acts parallel to VAF

(6.13)

which is oriented along the unit

vector
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VAf _ A /_ A

- - r-- exl ezl (6.14)

IVAf I \,//12 + ,;2 _+

Using Eq. (6.12) and (6.14), the drag force acting on the fuselage can be expressed as:

where from Eq. (6.12) and (6.13)

Df A _A

FDf -- _r-'-_/"z2+A2(/-Zexl-- /-ezl)
(6.15)

1 ._.2 _2, 2

DI = _-PA_Z _ Uz + ,':-2)fCdf (6.16)

The center of drag of the fuselage is assumed to be located a distance ZFA below the

hub along the negative z 1 axis, and a distance XFA behind the rotor along the x I axis, as

shown in Fig. 5. The position vector from the hub center to center of drag is given by:

A A

rFA = XFA exl -- ZFA ezl (6.17)

The fuselage drag force causes a pitching moment about the hub center given by:

MDfeyl ----- rFA × FDt (6.18)

Making use of Eqs. (6.15) - (6.18) yields:

F
1 2/2 22

MD! = _-pA(QR) %!,u + fCdf(,;-XFA -- /_ZFA) (6.19)

6.4 TRIM ANALYSIS

The blade equations formulated in this study represent the equations of motion of an

isolated blade ofa hingeless fixed-hub rotor configuration. In order to generate realistic

values of the vibratory hub loads, the rotor angle of attack and the pitch settings of the rotor

must represent meaningful values corresponding to those encountered by a helicopter in

steady forward Night. The trim variables must be selected such that the rotor generates

the forces and moments required by a helicopter with weight coefficient Cw and equivalent
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fuselageflatplatedragarea fCdf to maintain steady, level flight for an advance ratio/_. This

is accomplished by enforcing overall force and moment equilibrium of the helicopter for

any given flight condition. This is usually denoted as propulsivetrim[11].

A helicopter in free flight has a total of six degrees of freedom, three translational and

three rotational; consequently, three force and three moment equilibrium equations have

to be satisfied. In this study, however, the tail rotor is not modeled; therefore the tail rotor

pitch setting is not considered as a trim variable, and lateral force and yawing moment

equilibrium are not enforced. It is assumed that the tail rotor pitch setting can be specified

such that yaw equilibrium and lateral force equilibrium are maintained. Furthermore, the

main rotor shaft angle in the lateral plane (i.e. Cs, the sideways tilt of the rotor axis) is

excluded as a trim variable since it has very little influence on helicopter vibrations[45].

Thus, only four equilibrium equations: two force equilibrium equations, one in the ver-

tical (zl) direction and one in the longitudinal (xl) direction; and two moment equilibrium

equations, one in roll (about the x1 axis) and one in pitch (about the Yl axis); have to be

satisfied. The equilibrium equations are formulated in the "1" system with its origin at the

hub center O H, which represents the non-rotating, hub-fixed reference system (see Fig. 6).

Together with the inflow equation, there are a total of five trim equations which must be

solved for the trim variables in Eq.(6.2). These equations are assembled into the vector

of trim equations represented by Eq. (6.3).

The five trim equilibrium equations are:

(1) The inflow equation for a helicopter rotor in forward flight

,/ 2 ,;2ft(1) = CT nL 2\'t_ + (I_ tan :xR - ).) = 0 (6.20)

where constant inflow is assumed in this study for convenience. Equation (6.20) isasteady

state result from the steady far field momentum equation[25].

The thrust coefficient is defined as:

TR
CT -- (6.21)

_ R2pAR2..,_ 2
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whereTRis thetotalthrustproducedbytherotor,andis givenbyEq.(6.5).

(2)Therollingmomentequationis obtainedbysettingthetotalrollingmomentto zero

ft(2) = MHx 1 = 0 (6.22)

This is justified, since the rotor tilt angle in the lateral plane and the tail rotor are both not

modeled.

(3) The pitching moment equation is obtained by enforcing pitching moment equilibrium

about the hub

ft(3) = MHy 1 + MDt + Mwt = 0

where MHy 1 is the total hub moment due to blade loads, MDt is the pitching moment due

to the fuselage drag given by Eq (6.19) and Mwt is the pitching moment due to the fuselage

weight given by Eq (6.11). Substituting Eq. (6.19) and (6.11) into the pitching moment

equation yields:

ft(3) = MHy I-wf(-xFCcos:x R+ ZFCSin_R)

1 _2R2f_ /' 2
+ _-PA L"df%'# + ,,;2 (}.XFA _ /.IZFA ) = 0 (6.23)

(4) The verlical force equation is obtained by enforcing force equilibrium in the z1 di-

rection. Using Eqs.(6.8) and (6.15), the vertical force equation can be expressed as

ft(4) = FHz I -- W t COS _R -- Dt )" - 0

J#2 + ,;°2

where the fuselage weight Wf is given by Eq (6.7) and the fuselage drag force Df is given

by Eq.(6.12). Substituting Eq.(6.12) forthe fuselage drag into the vertical force equation

yields:

1 2 2 £\/2_/jft(4) = FHz1 -- Wf cos :zR -- _-pA () R fCdf + 2 2 = 0 (6.24)
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(5)Thelongitudinalforceequationisobtainedbyenforcingforceequilibriumin thex1

direction(seeFig.6). UsingEqs.(6.8)and(6.15),the longitudinalforceequationcanbe

expressedas

/J Wf sin_R = 0ft(5) = FHxl + Dr r--

_//2 + ,;2

where FHx1 is the longitudinal hub force due to blade loading. Substituting the fuselage

drag given by Eq. (6.12) into the longitudinal force equation yields

f,(5): F.xl+½pA  2R2fC ,. / 2+ - W,sin R= 0 (6.25)

It is important to emphasize at this point that only the constant part of the rotor loads

(i.e. their average value over one rotor revolution) needs to be in equilibrium with the

fuselage forces and moments for trim to be established. This aspect of trim is discussed

in greater detail in the section of this Chapter describing the solution procedure used in

this study.

It is evident from Eqs. (6.20)- (6.25) that the trim solution of the helicopter depends

upon the blade degrees of freedom through the rotor forces and moments, which are

functions of the blade response. Therefore the trim and response problems are closely

coupled and cannot be solved independently. One possible approach involves solving

each set of equations separately, but in a coupled manner, using successive approxi-

mations for the solution of the other set of equations. This is an iterative procedure in

which an approximation of the blade response is used to solve for an approximate trim

solution. This trim solution is then substituted back into the blade equations to obtain an

improved approximation of the blade response. This procedure is continued until the trim

and response solutions converge. Previous research at UCLA has shown that this iterative

procedure may be inefficient[-50,45].

Therefore in this study an alternative procedure for solving the coupled trim aeroelastic

response solution is used. The trim and response solutions are obtained simultaneously
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bytheharmonicbalancetechnique.Thisanalysisprocedureis verysimilarto theproce-

dureinitiallyusedin Ref.50.

6.5 COUPLED TRIM AND RESPONSE CALCULATION USING THE HARMONIC BALANCE
TECHNIQUE

In the harmonic balance technique, the solution of a periodic system of ordinary differ-

_ential equations in the time domain is replaced by a solution in the frequency domain.

Replacing the time domain solution by a frequency domain solution is justified, since only

the periodic nonlinear steady state response of the system is required. The harmonic

balance technique enables one to replace a system of ordinary differential equations of

motion in the time domain by a system of algebraic equations with constant coefficients in

the frequency domain. The Iransformation to the frequency domain is accomplished by

carrying out a Fourier series expansion of each differential equation and each corre-

sponding blade degree of freedom. Since a Fourier series expansion is only strictly valid

for periodic functions, the harmonic balance technique is suitable for periodic systems

only. The equations of motion of an isolated blade, in steady forward flight, represent a

periodic system; thus the harmonic balance technique can be applied to the problem of

determining the steady state trim and aeroelastic response solulion under steady flight

conditions. The harmonic balance technique is not applicable to flight conditions involving

transient flight maneuvers or gusts.

Any periodic function with a fundamental frequency of 1/rev (i.e. f(_ + 2_)= f(_)) can

be represented exactly by an infinite Fourier series expansion of the form

f(_/-/) = % 4- _[fnc c°s(nO)+ fns sin(n_/)]

n=l

(6.26)

where

1 £2_

fo = 2-E/JO f(_)d¢, (6.27a)

130



lt-2 ,_
fnc = _JO f(_,)cos(n_)d_ n = 1, 2..... oo (6.27b)

1_ '_fns - _ f(_,)sin(n_)d_, n = 1, 2 ..... oo (6.27c)

represent the Fourier coefficients of the series expansion and can be derived from Eq.

(6.26) using the orthogonality of cosine and sine functions.

It is usually both impractical and unnecessary to use the infinite series expansion re-

presented by Eq. (6.26) to capture the behavior of the periodic function f(_). Usually, very

good approximations can be obtained by truncating the expansion to a sufficient number

of terms

N H

- fO 4- _-_j[fnc cos(nt_)4- fns sin(ink)] (6.28)f(_,)
n= 1

The number of harmonics retained N H determines the quality of the approximation. Often

the higher harmonics are small and can be neglected. However, when Eq. (6.28) is em-

ployed in the solution of a periodic system, the number of harmonics retained in the sol-

ution must be at least as large as the highest harmonic present in the periodic forcing

function Equation (6.28) enables one to represent of a scalar function of_ by a set of

(1 + 2NH) coefficients. Equations (6.28) and (627), which can be extended to the vector

case, are used to develop the harmonic balance technique.

In steady forward flight the blade response is periodic with a fundamental frequency of

1/rev (i.e. qb(_)= qb(6' + 2_)) and thus it can be approximated by a Fourier series expan-

sion containing NH harmonics

NH

qb _ qbO 4- ,_[qbnc cos(n_,)+ q'bns sin(nt_)] (6.29)

n=l

where qb0 represents the constant part of qb and qbnc and qbns represent the cosine and

sine amplitudes, respectively, of the n/rev harmonics. Collectively qbO, qbnc and "qbns rep-

resent a total of (1 + 2N H) vectors, each containing a total of NDO F coefficients. These
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vectors can be considered as the coefficient vectors of the Fourier expansion of the blade

degrees of freedom.

The number of harmonics N H retained in the expansion of the blade degrees of freedom

determines the accuracy of the response solution. There are two primary factors which

must be considered when selecting NH: First, since the response solution is used to de-

termine the vibratory hub loads, which are predominantly Nb/rev, at least N b four harmon-

ics must be retained; and secondly, to properly capture the effects of the various N/rev

harmonic control inputs used to reduce vibrations, N H should be at least one greater than

the highest harmonic used in the control input Nmax. Thus, the number of harmonics re-

tained is determined from the following expression:

N H = max(N b , Nmax)+ 1

From Eq. (6.29), the first and second derivatives ofqb can be expressed as:

N H

qb _ [ -- nqbnc sin(n_,)+ nqbns cos(n_)] (6.30a)
n=l

.. Nil

70 "_[ - n2 qbnc COS(m/J)- n2 qbns sin(n_)] (6.30b)
n=l

Thus the blade response can be completely described in terms of the (1 + 2NH) coefficient

vectors represented by-qb0, qbnc and qbns. These vectors collectively represent a lolal of

(1 + 2NH)NDo F coefficients and represent the new degrees of freedom of the problem. The

blade response solution in the frequency domain consists of finding the coefficient vectors

qb0, qbnc and qbns such that Eq. (6.1) is satisfied, which is coupled with finding the vector

of trim variables qt such that Eq. (6.3) is satisfied.

The blade equations and trim equations can be expressed explicitly in terms of the

blade expansion coefficients by substituting Eqs. (6.29) and (6.30) directly into Eqs. (6.1) and

(6.3). After performing various trigonometric and algebraic manipulations, collecting the

constant part and the various harmonics for each equation and putting them in a series

representation, the trim and blade equations can each be expressed in the form:
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NH_

n=l

(6.31)

NHb

fb _-- fbO + _,[_bnc c°s(n0)+ fbns sin(n_)] =

n=l

(632)

The integers NHt and NHb represent the number of harmonics which arise in the trim

and response equalions, respectively, from the substitution of the Fourier series expansion

for the blade degrees of freedom given by Eq. (6.29) into the equations. The product of two

harmonic signals with frequencies _o1 and _2, respectively, can be expressed as a sum of

two harmonic signals with the respective frequencies ((02 + _1) and (_2-(°1) ; since the

trim and blade equations contain products of the blade degrees of freedom, the integers

NHt and NHb will generally be larger than N H.

As stated previously, trimming the vehicle only involves enforcing the equilibrium of the

constant part of the forces and moments acting on the vehicle, thus only the constant part

of Eq. (631) needs to be satisfied

ft0 = _ (6.33)

Equation (6.33) represents a system of five algebraic equations in terms of the five trim

variables and the NDOF(1 + 2NH) blade response coefficients.

However, in order to satisfy Eq. (6.32), it is necessary that the constant part and the

various n/rev harmonics be set equal to zero, i.e.

fbO = 0 (634a)

f'bnc : fbns :_" n : 1, 2 ..... NHb (6.34b)

Equations (6.34) represents a set of NDOF(1 + 2NHb ) coupled nonlinear algebraic equations

in terms of the five trim variables and the NDOF(1 + 2NH) blade response coefficients. To

ensure thal the number of equations is equal to the number of unknowns, NHb iS set equal

to NH. Thus Eqs. (6.33) and (6.34) collectively represent a coupled system of
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[5 + NDOF(1 + 2NH)] algebraic equations in terms of [5 + NDOF(1 + 2NH)] trim and blade

expansion coefficients variables. Through the use of harmonic balance technique, the

solution of a coupled system of NDOF ordinary differential equations and five trim equations

in the time domain has been transformed to the solution of a coupled system of

[5+NDoF(I+ NH)] algebraic equations in the frequency domain. Though the dimension

of the problem has increased substantially, it is generally much easier to solve a coupled

system of nonlinear algebraic equations than a smaller system of coupled nonlinear peri-

odic ordinary differential equations. There are many packaged programs available which

solve systems of nonlinear algebraic equations. In this study the IMSL[58] subroutine

DNEQNF, a Newton based method which uses finite differences to form the Jacobian, is

used to obtain the coupled trim and response solution.

Unfortunately, the formation of the explicit expansions given by Eqs. (6.31) and (6.32)

represents a formidable task (even by computer algebra) due to the plethora of higher or-

der terms involving products of the blade degrees of freedom resulting from the assump-

tion of moderate deflections. Therefore, the formation of Eqs. (6.31) and (6.32) is done

numerically. Examination of these two expressions reveals that they represent Fourier

expansions of the trim and response equations. Therefore the expansion coefficients in

Eqs. (6.31) and (6.32) represent Fourier coefficients; use of the definition of these coeffi-

cients presented in Eqs. (6.27) can be used to numerically determine the value of each of

these coefficients. Therefore, Eqs.(6.33) and (6.34) can be expressed as

ft0 = ft(qb'qb'qb'qt, '__)dt_' = -_
F.

(6.35a)

fb0 = fb(qb, qb, qb, qt' &;_)d_ =
F.

(6.35b)

fbnc = fb(qb, qb, qb, qt, 5; _) cos(n_) d_ = 0 n = 1,2 ..... N H
(6.35c)
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fbns= fb(qb'Clb,Clb'qt'&:_)sin(n_')d_= _ n= 1,2 ..... N H (6.35d)

Gaussian quadrature is used to evaluate the integrals in Eqs. (6.35), because it mini-

mizes the number of integration points for a given accuracy[2]. The expansion of the blade

degrees of freedom represented by Eqs. (6.29) is substituted into Eqs. (6.35), but is not ex-

panded; instead, it is evaluated numerically at each azimuth angle _ required in the nu-

merical integration scheme. In this study, 30 Gaussian integration points are used to

integrate over one rotor revolution.

6.6 CALCULATION OF THE 4/REV HUB SHEARS AND MOMENTS

For a four bladed rotor in steady flight, the vibratory hub loads are predominantly 4/rev

in the fixed system. In this study, various optimal control strategies are employed to si-

multaneously reduce the 4/rev hub shears and moments. The amplitudes of the4/revvi-

bration components are obtained from a harmonic analysis of the hub loads. If-FH(_)and

MH(_) represent the total force and moment, respectively, at the hub obtained by summing

the contribution from each blade in the fixed system, then

FH4c = _ FH(_)COS4 _ d_

-FH4s = "FH(_) sin 4_ d_

(6.36a)

(6.36b)

represent the cosine and sine amplitudes, respectively, of the 4/rev hub shears. Similarly,

MH4 c = . MH(_)COS 4_ d_ (6.37a)

"_IH(_) sin 4_ d_M H4S =

represent the cosine and sine amplitudes, respectively, of the 4/rev hub moments.

(6.37b)
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6.7 LINEARIZED STABILITY

In this study the stability of the periodic system, linearized about the time-dependent

equilibrium position, is determined from Floquet theoryr13]. Linearizing the blade

equations about the nonlinear time-dependent equilibrium position yields

fb(qb + Aqb) : [M(-qb)]&-qb + [-C(qb)]A-qb + [K(qb)]A-qb + h.o.t. = (6.38)

where the fact that-f'b(qb)= _ has been used. The quantity Aqb represents a small pertur-

bation from the time dependent equilibrium position, and

[M] = _fb/rTqb

[C] = 7fb/_Tqb

[K] = _fb/_qb

are the mass, damping, and stiffness matrices, respectively, of the linearized system.

The linearized system given by Eq. (6.38) can be expressed in the first order state space

form

where the state vector y" is defined as

: [A]y (6.39)

= Aqb }

and the system malrix [A] is defined as

-[M]-I[K] -[M]-I[c]

In hover, the system matrix [A] is constant, and lhus lhe eigenvalues of [A] determine

system stability. If 2.j=_]+i_; is the i-th eigenvalue of [A], then the system is

assymptotically stable if_j < 0 for all j.
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In forwardflight,however,thesystemmatrix[A] is periodicwitha periodofonerotor

revolution(i.e.,[A(_)]= [A(_ + 2=)]). Thestabilityof the periodicsystemcanbedeter-

minedusingFloquettheoryfromtheeigenvaluesof thestatetransitionmatrixat theend

of one period. Accordingthe Floquet theory[13], the characteristicexponents

).j = _j+ie_j of the periodic system are related to the characteristic multipliers

/%] = Zj-t- i _i of the state transition matrix at the end of one period [_(2_., 0)] as follows:

1 In(/._ + _)_)_;- 2r

1 -1 _j (6.40)
_j = -_-tan (Z_-)

where _=2tc is the non-dimensional rotor period. The tinearized periodic system is

assymptotically stable if _[] < 0 for all j.

The state transition matrix at the end of one period can be calculated by numerically

integrating Eq (6.39) over one revolution n times, where n = 2NDo F is the dimension of the

linearized system in state space form, using the initial conditions

"yj(O) = {_}lJ (_2J "'" '_nJ}T for j= 1, 2..... n (6.41)

The quantity 5ij is unity when i=j and zero otherwise. Solving the system given by Eq.

(639) using the initial condition vector yj(0) yields the j-th column of the state transition

matrix.

For numerical efficiency, the task of integrating the system is done so that the n inte-

gration passes are carried out simultaneously; this approach is commonly denoted the

single-pass method[4]. The single-pass version of the classic n-pass algorithm consists

of numerically integrating over one revolution the n2 system represented by

= [A] Y

• [A] [0]

[0] [A]I

(6.42)

using the initial condition vector

137



q(o)= {-_(0)_(0).. _(0)}T (6.43)

where yj(O) is defined by Eq (6.41). The solution of the system represented by Eq. (6.42)

using the initial condition vector given by Eq. (6.43) yields all n columns of the state tran-

sition matrix simultaneously.

In this study the numerical integration of the system given by Eq (6.42) is accomplished

using DE/STEP, a general purpose Adams-Bashforth ODE solverr48]. It is important to

note that the implementation of the single-pass algorithm does not require the coding of

the n2 x n2 matrix in Eq. (6.42), but only the coding of the n x n system matrix [A].
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ChapterVII

VIBRATIONREDUCTIONUSINGACTIVECONTROLS

The vast majority of helicopter vibration reduction studies

[5,23,27,34,40, 43,44, 49,50,51,56,57] to date have employed control strategies based on

frequency domain formulations of the control problem. The periodic nature of the blade

response in forward flight is used to transfer the control problem from the time domain,

where it is described by a set of differential equations with periodic coefficients, to the

frequency domain, where it is governed by a set of algebraic equations with constant co-

efficients. However, since the periodic assumption is only valid under steady state condi-

tions, the control solutions obtained are only applicable toward the reduction of the

vibration levels experienced in steady flight.

The control strategies are generally based on the minimization of a performance index

that is a quadratic function of the vibration magnitudes and control input amplitudes.

j = _T EWz]_, + u T [Wu]U, + Au T [Wg]Au, (7.1)

where.&uj=uj-ui_ 1. The vectorsZt andu t contain the cosine and sine amplitudes of the

vibration and control input harmonics, respectively, during the i-th control step. The in-

dices on both the vibrations and control reflect the discrete-time nature of control strate-

gies based on frequency domain formulations of the control problem. The time increment

(or control step) ts = At between control updates must be sufficient to allow the system to

return to a steady state condition. In a real-time application of feedback control on an ac-

tual helicopter, ts must provide a long enough time sample of the vibration levels to prop-

erly measure their cosine and sine amplitudes, which are used as feeback to the controller.

Generally, the time increment is at least one rotor revolution[24,45].

The matrices[Wz], [Wu] and [W,_] in Eq. (7.1) are weighting matrices on the vibrations,

control and rate of change of control, respectively. Constraints may be placed on the
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magnitudeof thecontrolupdateAui to ensurecontrollerstabilityunderrapidlychanging

conditions.Theweightingmatricesaretypicallydiagonal,inwhichcaseJ representsthe

weightedsumof themeansquaresof thevibrationsandcontrol.Therelativeweightings

oneachofthe parameterscanbechangedto varytheir relativeimportance.

Theoptimumcontrollawis obtainedbytakingthe gradientof J givenbyEq.(7.1with

respecttothecontrolu_andsettingthegradientequalto zero

_J - O (7.2)

CU I

The resulting set of equations are solved for the optimal control denoted by u_ , where

"optimal" refers to the control input which minimizes J during each control step.

In the case where all the parameters in the model are known, a deterministic optimal

control strategy is obtained from the solution of Eq. (7.2). However, with unknown, esti-

mated parameters, the certainty-equivalence principle may be applied: the deterministic

control solution is used with the estimated parameter values; otherwise, a cautious con-

troller is obtained by minimizing the expected value of the performance index J with re-

spect to the control. In this study, only deterministic controllers are considered; i.e., it is

assumed that both the control input and the resulting vibration levels are known without

error.

Before J can be minimized with respect to the control input, it is necessary to first ob-

tain a model of the system response, represented by Z , to the control. Two linear,

quasi-static, frequency domain representations of the helicopter response to control are

commonly usedr5,23,27,34,40, 43,44, 49,50.51,56,57]. The first is a global model which as-

sumes linearity of the system over the entire range of control application; and the second

is a local model which is based on a linearization of the system about the current control.

Both models utilize a transfer matrix, usually denoted as [T] , to relate the cosine and sine

amplitudes of the control harmonics to the cosine and sine amplitudes of the vibration

harmonics. This concept of a linear, quasi-static, frequency domain representation of the

relationship between harmonics of the vibratory response and the harmonics of the control
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inputwasfirst introducedinRef.30,wherethenotation[T] forthetransfermatrixwasfirst

used.

Thetransfermatrixcanbe interpretedastheJacobianof thesystemresponseto the

conlrolinputwhichis requiredin a Taylorseriesexpansionof theresponseabout some

control input u o

Z(u) = Z(uo) + [T(Uo) ] (u - Uo) + h.o.t.

where

IT] -
cu

In the global model, where linearity is assumed over the entire range of control appli-

cation, the Taylor series expansion is evaluated about a zero control input (i.e., u o =O)

Z, : Z0 + [T0]u, (7.3)

whereZ0 represents the baseline (uncontrolled) vibration levels. In this model the transfer

malrix is evaluated about a zero control input, and is assumed Io be constant over the

entire range of control application.

Substituting Eq (7.3) into Eq. (7.1) and minimizing with respect to the control yields the

global controller

UI -- [D0] -1 {[T0]T[Wz]Zo -- [WA]u,*_I } (7.4)

where

[O0] = [T0]T[Wz]ET0]+ [Wu]+ [WA] (7.5)

Equation (7.4) is in the form of an open-loop controller[24] where the control during each

control step is determined by the uncontrolled vibration levels Z0. In the case where the

rate of change of control is not penalized (i.e., [W_] = [0]) the controller converges in a

single step.
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Feedbackcanbe introducedintotheglobalcontrollerbyexpressingtheglobalsystem

modelin theequivalentform

Z, = Z,-I + [To](u,--u'-1) (7.6)

whichwasobtainedbyevaluatingEq.(7.3)fortwosuccessivecontrolstepsandsubtracting

thetwoexpressions.

SubstitutingEq.(7.6)intotheperformanceindexJ andminimizingwithrespectto con-

trol yields

Ui [D0]-1{[T0]T[Wz]Z,_I- [W_]u,_1

T --'_ (7.7)
-[T0] [Wz][T0]u,-1}

where [Do] is given by Eq. (7.5). Equation (7.7) is in the form of a closed-loop controller

where the control input during each control step is determined by feedback of the meas-

ured vibration levels of the previous control step. Equation (7.7) is denoted as the feedback

form of the global controller.

If the system were truly linear, then the open-loop form of the global controller given

byEq.(7.4) would yield the true "°ptimal" input (in the sense that J is minimized) However,

the system represented by a helicopter in forward flight is inherently nonlinear due to

moderate blade deflections, which introduces geometric nonlinearities into the system.

The use of the feedback form of the global controller given by Eq. (7.7) should yield better

vibration reduction in the presence of system nonlinearities. However, it is reasonable to

expect that a controller based on a local system model, which is based on a linearization

about the control, would produce the best vibration reduction.

The local system model is obtained by linearizing the system about the current &ohtrol

input

Z, = Z,-I + [T,-I](u'--u'-I) (78)
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In this case the transfer matrix is assumed to be a function of the current control input

ul_ 1 .

Substituting the local system model into the performance index and minimizing with

respect to the control yields the local controller

u_ = - [D,_I] -I{[T,_I]T[wz]z,_I _ [W_]u*_I

- [T,_ 1]T[Wz][T,_I ]U,*l }

where

(7.9)

[D,-1] - [T,-1]T[Wz][T,_I]+ [Wu]+ [W_] (7.10)

Equation (7.9) is in the form of a closed-loop controller[24] where the control input during

each control step is determined by feedback of the measured response during the previous

control slep. Comparison ofEq.(7.9) with the feedback form of the global controller given

by Eq. (7.7) reveals that lhe only difference between the two controllers is that the transfer

matrix [T] must be updated after each control step in the case of the local controller.

Updating the transfer matrix should improve the controller performance due to the nonlin-

earity of the system.

Detailed derivations of the global and local controllers presented above, along with

their cautious counterparts, are presented in Ref. 24.

7.1 REDUCTION OF THE 4/REV HUB SHEARS AND MOMENTS

In this study, the deterministic global and local controllers are employed to produce

simultaneous reduction in the 4/rev hub shears and moments. In this case the vibration

vector Z, contains the cosine and sine amplitudes of the 4/rev hub shears and moments

-- ZM (7.11)

where

143



LMH4s)

7.2 CONTROL INPUT FOR VIBRATION REDUCTION

In the present study, vibration reduction in forward flight is uniquely implemented

through an actively controlled trailing edge flap on the blade. To guarantee a periodic

blade response, only periodic control inputs with a fundamental frequency of _ are con-

sidered. In this case the control flap deflection angle of the k-th blade can be expressed

as a sum of harmonic signals with frequencies that are integer multiples of the rotor fre-

quency

Nmax

cS(t#k) = _ [_Nc Cos(N_k) + 6Ns sin(N_Jk)] (7.12)
N=2

where Nma x represents the highest harmonic used in'the control input signal. The 1/rev

input harmonic is inlensionally excluded since it was decided to not disturb the trim cyclic

pitch inputs.

In the present study, the four blades are assumed to be identical. To ensure that all four

blades track, it is assumed that the control flap on each blade executes the same motion,

but shifted in phase by the angle between the blades (ninety degrees in the case of a four

bladed rotor.) Thus the control input for vibration reduction using the globalor local con-

trollers can be represented by the vector containing the cosine and sine amplitudes of the

various N/rev input harmonics

U = {CSNc, (_Ns ..... C$(Nmax)c, C_(Nmax)s}T (7.13)

Conventional individual blade conlrol (IBC), which relies on oscillating the entire blade,

is also implemented in this study, purely for comparison purposes In the IBC case the

total pitch input is given by

8pc(_k) = (_0+ (_1c COS(_k) + _ls sin(_k) + 0_BC(_k) (7.14)
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where

Nmax

alBC(_k ) = _ [0Nc cos(N_ k) + 0Ns sin(Nl,_k)]
N=2

is the lBC pitch input. The control input vector forlBCis defined as

-U = {t")Nc' ONs ..... _(Nmax)(:, _(Nmax)s} T

(7.15)

(7.16)

7.3 TRANSFER MATRIX CALCULATION

As mentioned previously, the transfer matrix [T] can be interpreted as the Jacobian of

the vibratory response with respect to the control input. Since the blade response solution

and the vibration levels are obtained numerically, the sensitivity of the system to control

must also be determined numerically. Thus, in this study, the transfer matrix is calculated

numerically one column at a time using finite differences. If the small change in the blade

response due to a small perturbation in the control input was neglected, however, ap-

3roximate analytical expressions for the elements of the [T l matrix could be developed.

In the case of the global controller, the transfer matrix is evaluated about a zero control

input. Thej-th column of the transfer matrix is formed by setting all elements of the control

input vector to zero except the j-th element, which is set to some small value, say 0.01

radians. The resulting change in the 4/rev vibration levels from their baseline values is

calculated and then divided by the magnitude of the control input, 0.01 radians, yielding the

j-th column of the transfer matrix.

In the case of the local controller, which is based on a linearization of the system about

the control, the transfer matrix is evaluated about the current control. Thej-th column of

the transfer matrix is calculated by adding a small increment, say 0.01 radians, to the j-th

element of the current control vector. The resulting change in the vibration vector is di-

vided by the value of the small increment, 0.01 radians, yielding the j-th column of the

transfer matrix.
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7.4 CONTROL POWER REQUIREMENTS

Operating the control surface actuators for vibration reduction will of course require

power from the helicopter powerplant. It was postulated that a suitable measure of the

power required will be provided by the instantaneous power required to drive a single

control flap, averaged over one rotor revolution, and multiplied by the number of blades.

The instantaneous power consists of the product of the instantaneous values of the control

surface hinge moment Ma(_ k) and the angular velocity of the control surface about its hinge

_(_k) Thus the power required to implement control using an active control surface on

each blade is defined as:

N b =4

: _, [ -- M,)(#'k)'_(0k)] d_k (7.17)Pcs
i

k:l

The negative sign in Eq (7.17) accounts for the fact that the instantaneous power is defined

as positive when the required control torque and the angular velocity are in the same di-

rection. The hinge moment M3 has been defined as the net moment about the control

surface hinge due to the loads on the control surface. Thus the actuator must supply a

counter torque equal to - M,_(_,_,k) in order to implement the control.

Both M3(_k ) and '_(.'_k) represent harmonic signals, and when there is a phase difference

between these two harmonic signals (which will generally be the case), then the instanta-

neous power will be negative over some portions the cycle. Negative power has no

meaning in this context, however, since the helicopter powerplant cannot accumulate

power. Therefore, for the regions in which the integrand in Eq. (7.17) is negative, whichcan

occur over a significant portion of the rotor revolution[4445], the integrand is set equal to

zero.

In addition to the power required to drive the control surfaces, additional power may

be required to drive the rotor. It is noteworthy that introduction of the control inputs to the

blade will modify the blade loads and thus the required rotor torque can also be affected.

Furthermore, the implementation of control could reduce the rotor power requirements. In

the flight tests conducted in Ref. 57, a small decrease in rotor power was observed when
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HHCwasimplemented.Thissavingin powermayoffselthepowerrequiredto drivethe

controlsurfaces.Therotorpoweris definedastheaveragepoweroveronerotorrevo-

lutionrequiredto drivetherotorata constantangularvelocityQ

(2 1"2'_
PR= -_ J0 [ - MHzl(_')]d_ (7.18)

whereMHzI(_, ) is the total yawing moment about the hub. The negative sign in front of

MHzl(_J ) is due to the fact that it represents the torque about the rotor shall due to the

loading on the blades, and therefore the power plant must supply a torque equal to

( -- MHz 1) to maintain a constant angular velocity. Equation (7.18) can be used to calculate

the rotor power in absence of flap control inputs as well as when the control is imple-

mented to determine any changes in rotor power.

Athird kind of power requirement must also be considered. Since the blade loads are

affected by the flap inputs, the power required to drive the pitch link actuators for helicopter

control may also be affected. Therefore, the change in power required for helicopter con-

trol must also be taken into account. The power required for helicopter trim (i.e. trim

power) is defined as:

Nb =4

Ptr,m = _, _ [ -- MRx3(0k)Opc(I/_k)] d_ k (7.19)

I-,=1

where MF_x3(_k) represents the torsional moment about the root of the k-th blade. For the

regions in which the integrand in the above expression is negative, the integrand is set

equal to zero. Equation (7.19) can be used to calculate the trim power both with and with-

out flap control inputs to determine any changes in trim power requirements.
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Chapter VIII

MODEL VERIFICATION

Before pursuing the principal goals of any analytical study it is crucial to first validate

the analytical model and solution procedure developed in the study. This is best accom-

plished through comparisons with other investigations with comparable analytical models.

In the present study, comparison of trim and blade response results can be used to test

both the validity of the equations of motion as well as the solution procedure implemented.

Furthermore, for equations of motion presented in explicit form, as they are in this study,

a direct term by term comparison can be made in order to verify the expressions and

identify any differences which might affect the results.

In addition to trim and response results, comparisons of blade stability results in for-

ward flight can also be used as a reliable test of the accuracy of the equations of motion.

It is well known that blade stability results are much more sensitive to the higher order

terms in the equations of motion than the trim and response results. Since the vibratory

hub loads can also be very sensitive to these higher order terms, it is important to carry

out stability comparisons to properly ensure the validity of the analytical model employed

in this study before proceeding to the calculation of the vibratory hub loads.

There are no results available in the literature against which blade response and sta-

bility, including the effect of the control surface, could be validated. Though the controlla-

ble twist rotor investigated in Ref. 28 utilized a servo flap, it was implemented on an

articulated blade, in contrast to the hingeless blade modeled in the present study. Thus,

validation of the blade model without the control flap is the best that can be conducted at

present. But since the control flap is incorporated into the blade model in a mannercon-

sistent with the overall problem formulation, model validation without the flap should still

lend credence to the entire blade model.
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8.1 VALIDATION OF THE OFFSET-HINGED SPRING RESTRAINED BLADE MODEL

The offset-hinged spring restrained blade model utilized in Ref. 50 to investigate the

active control of helicopter aeromechanical and aeroelastic instabilities is almost identical

to the model used in the present study. The inertial loads were obtained using

D'Alembert's principle and Greenberg quasisteady aerodynamics are used to calculate the

aerodynamic loads. However, the reverse flow model and solution procedure used in Ref.

50 differ from those used in the present study. In Ref. 50 the sign on both the drag and the

lift switch sign inside the reverse flow region, as opposed to setting the lift to zero, which

is done in this study. Flap trim and quasilinearization was used in Ref. 50 to obtain the

majority of the trim and response results. However, a version of the harmonic balance

technique, similar to the procedure used in this study, was also employed to investigate the

effect of the solution procedure on the trim and response results.

Although the model of Ref. 50 incorporates a rigid fuselage to investigate coupled

rotor/fuselage instabilities, the fuselage degrees of freedom were set to zero in the trim

and response solutions. Though the solution procedure used in Ref. 50 differs from the

method used in this study, the equations of motion were essentially identical; therefore the

trim and response results obtained in Ref. 50 should be comparable to those obtained in

the present study.

Blade stability results were also obtained in IRef. 50. It is well known that such results

are a good indicator of the accuracy of the mathematical model, because blade stability is

sensitive to higher order terms. The method used to compute the stability results in Ref.

50 was similar to that employed in the present study.

In Ref_ 50 the forces and moments acting on the blade were formulated explicitly, thus

allowing a direct term by term comparison with the expressions of this study. Comparison

of these expressions reveals that the two sets of expressions are almost identical except

for a few terms of the highest order retained in the ordering scheme. While the ordering

scheme used by Ref. 50 was identical to the one used in this study, there are a few terms

that were not included in the expressions of Ref. 50 which should have been retained based

on a consistent application of the ordering scheme. However, these terms are very small
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andhavelittle or no effect on the trim and blade response solution; but they may have a

minor effect on the blade stability results.

To ensure that the explicit expressions are implemented correctly in the computer

analysis program, trim, blade response, and stability results were generated and com-

pared with those of Ref. 50. First the coupled flap-lag portion of the blade model is vali-

dated by comparing it to the coupled flap-tag stability boundaries in hover and the coupled

flap-lag response solution in forward flight. Next, the coupled flap-lag-torsion problem is

validated by comparing it to the coupled flap-lag-torsional trim and blade response results

in forward flight. Finally, stability results are compared.

8.1.1 Coupled Flap-Lag Problem

Reference 50 compared flap-lag trim, blade response, and stability results with Ref. 8

to validate the flap-lag portion of the blade model. In the investigation of the effects of

unsteady aerodynamics in rotary-wing aeroelasticity presented in Ref. 8, an offset-hinged

spring restrained blade model was utilized with flap and lead-lag dynamics only. The

aerodynamic loads were based on both Greenberg unsteady and quasi-steady aerodyna-

mics, but with the noncirculatory portion of the lift and moment excluded. The blade model

of Ref. 8 should be similar to the model of this study with the torsional degree of freedom

and the noncirculatory portion (apparent mass terms) of the aerodynamic loads removed;

this was also concluded in Ref. 50. Therefore, flap-lag results generated using the model

of the present study are also compared with the results presented-in Ref. 8.

By setting the non-dimensional fundamental rotating torsional frequency of the blade

equal to a sufficiently high value, i.e. O)T1 __ 10, the torsional degree of freedom can be

removed. However, the noncirculatory portion of the aerodynamic loads could not be re-

moved as easily. For the purposes of making comparisons with Ref. 8, a second set of

equations of motion were derived for this study in which the noncirculatory lift and moment

were not included.
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8.1.1.1 Stability Boundaries in Hover

The data for the hover case is shown in Table 1 and was taken from Ref. 8. The data

presented in this table have been non-dimensionalized using R, M b and (1/_2) for length,

mass and time, respectively. The inflow equation used in Ref. 8 to calculate the hover

stability boundaries is given by

a°° / 240G 1) (8.1)
"_'= 1--_6 X/1+ ao,_

TABLE 1

Non-dimensional data for the calculation of the coupled flap-lag stability boundaries in
hover

Flight Data

I_ = 0.0
Rotor Data

cb = 2b = 0.03927 L_T1 = 10
L b = 1.0 COF1 = variable

e ---- 0.0 Q)L1 = variable

pp = 0.0 C 6 = 0.0
-f/pt ---- 0.0 Cfl --- 0.0

Rc = 0.0 C_ = 0.0
t_o = 0.25 ao=2_
xb = 0.5 Cdo = 0.01
Ib = 0.3333333 Cm0 = 00

Jb -- 0.0002572 N b = 4

Xtb = 0.0 a = 0.05
XA = 0.0 7' = 5.0

Fuselage Data

XFA = 0.0 ZFA ---- 0.0

XFC = 0.0 ZFC = 0.0

A comparison of the coupled flap-lag stability boundaries in hover generated using the

model developed in this study, together with the models employed in Refs. 8 and 50. is

presented in Fig. 13. The overall comparison of the results with both references is quite

good. Clearly the stability results of this study compare most favorably with the results of

Ref. 50. lhough there is some minor disagreement at the lower blade frequencies. As

mentioned previously, a direct comparison of the explicit expressions developed in this

study with those of Ref. 50 revealed a slight discrepancy in the higher order terms. Due
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to the sensitivity of stability results to higher order terms, it was concluded that this small

discrepancy was the primary cause of the minor disagreement between the two sets of

results.

8.1.1.2 Response Solution in Forward Flight

The non-dimensional data for this model is presented in Table 2 and corresponds to the

"C" model used in Ref. 8, which represents a soft-in-plane hingeless rotor blade with uni-

form properties. The data have been non-dimensionalized using the dimensional param-

eters listed in the previous section.

TABLE 2

Non-dimensional data for the calculation of the coupled flap-lag response in forward flight

Flight Data
#=0.4

Rotor Data
cb = 2b = 0.05498 ('_T1 =-10
L b = 1.0 LOF1 ---- 1.125

e = 0.0 C,jL1 = 0.732

i= 0.0 C_ = 0.0
= 0.0 C/_ = 0.0
= 1.0 C_; = O0

xb = 0.5 a o = 2_.
ID = 0.3333333 Gd0 = 0.01
Jb ----- 0.0002572 Cmo = 0.0
Xlb : 0.0 N b = 4
XA = 0.0 _ = 0.07

y = 5.5

Helicopter Data
C w -- 0.005 fCdf = 001AR
XFA : 0.0 ZFA : 0.0
XFC _-- 0.0 ZFC = 0.0

The reverse flow model used in Refs. 8 and 50 differs from the model used in this study.

In the reverse flow model used in these two references, the sign of the drag and lift was

switched inside the reverse flow region. Therefore, when generating the results in this

section, the reverse flow model employed in Refs. 50 and 8 was adopted.

For the coupled flap-lag case the comparison of the flap and lead-lag response, at the

blade tip, is presented in Fig. 14. The response solutions given in Refs. 8 and 50 were
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obtainedusingtheflaptrim andquasi-linearizationmethod;however,the responsesol-

utionfor thepresentstudywasobtainedusingthefull trim harmonicbalancetechnique

withthreeharmonics(i.e.NH= 3). Thoughtheflap-lagresponsesolutionofthis studyis

verysimilarto thesolutionsof Ref.50and8,thereis a markeddifference.Thiscanbe

attributedtothedifferencein solutionmethods;sinceonlytheflapresponsewasusedto

obtainthetrimsolutionin Refs.50and8,it differsfromthetrimsolutionusedinthisstudy

in whichthefull coupledflap-lagresponsesolutionis solvedin a coupledmannerwith

propulsivetrim. Thereforethebladeresponsesolutionsof Refs.50and8,shownin Fig.

14,werecalculatedfor a somewhatdifferenttrim statefromthatusedin thisstudy.This

observationwasalsomadeinRef.50whereit wasdiscoveredthatthedeviationinthetrim

variablescalculatedusingflaptrimfromthoseusinga fullycoupledtrim/aeroelasticanal-

ysiscouldproducea significantdifferencein therespectiveequilibriumsolutions.

Despitethe fairly smalldisagreementbetweenthe coupledflap-lagbladeresponse

solutionobtainedin thisstudyandthosegeneratedinRefs.50and8,whichcanmostlikely

beattributedtothedifferenceinsolulionprocedures,thecomparisonsweredeemedclose

enoughIo lendcredenceto theflap-lagportionof the mathematicalmodelandsolution

procedure.

8.1.2 Coupled Flap-Lag-Torsion Problem

In this section the complete coupled flap-lag-torsional equations of motion together with

solution procedure are verified by comparing the trim, response and stability results in

forward flight those obtained in Ref. 50. The non-dimensional data for the blade config-

uration used in these comparisons is given in Table 3 and corresponds to a soft-in-plane

matched stiffness (i.e. K/_=K;) rotor blade with uniform properties. The data in Table 3

has been non-dimensionalized using R, M b and (1/,q) for length, mass and time, respec-

tively. The trim and response solutions of the blade in forward flight are compared first,

and next the lead-lag damping values in forward flight are also compared.
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TABLE3

Non-dimensionaldatausedincalculatingthecoupledflap-lag-torsionresultsin forward
flight

FlightData
/_ = 0.3

Rotor Data
c = 2b -- 003927 (OT1 = 2.5, 5.0

L b = 1.O (OF1 = 1.15
e = 0.0 O)L1 = 0.57

!i=0o= 0 I 0 = 0 I 0
-- O.0 C_ = 0.0

X b = 0.5 ao = 5.70
Ib = 0.3333 Cd0 = 0.01
Jb = O.0OO1 Cmo = -0.02
Xlb : 0.0 N b : 4

X A = 0.O dr : 0.05

7=5.0

Helicopter Data
Cw -- 0.005 fCdf= O.01A R
XFA : 0.0 LFA = 0.2
XFC : 0.0 LFC : 02

8.1.2.1 Trim Solution in Forward Flight

Though flap trim combined with the quasilinearization procedure was used to obtain

most of the trim and response results in Ref. 50, a small set of results were presented

which were obtained using the harmonic balance technique described in this study. The

trim and response results obtained in Ref. 50 by employing the harmonic balance tech-

nique are compared in this section to similar results calculated in the present study. The

results presented in this section were generated by retaining three harmonics (N H = 3) in

the expansion of the blade degrees of freedom.

The first comparison presented is between the trim variables obtained in this study with

those of Ref. 50, calculated at two different blade torsional frequencies. 'Figure 15 presents

the comparison between the rotor plane angles of attack and inflow ratios, and Fig. 16

compares the collective and cyclic pitch inputs. It should be noted that these results were

generated without the reverse flow model. The comparison of the trim results is quite

good, though the trim solutions tend to diverge slightly at the higher advance ratios. The
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exactreasonforlhis wasnol found,howeverthe discrepancybetweenthetrim solutions

issufficientlysmallto concludethatoverallthecomparisonsare very good.

8.1.2.2 Response Solution in Forward Flight

A comparison of the flap, lead-lag and torsional responses are presented in Fig. 17 for

an advance ratio of/_ = 0.3 and rotating nondimensional torsional frequency of 5.0/rev. The

lead-lag and torsional responses obtained in this study are almost identical to those in Ref.

50. However, there is a small but noticeable difference between the flap responses. The

flap response of this study has two even peaks, while the two peaks of Ref. 50 are slightly

uneven; the first peak being slightly smaller than the second. The cause of this slight dis-

crepancy is unclear, but may be related to the small discrepancy between the higher order

terms present in this study which were not present in Ref. 50, as noted earlier. However,

this minor variance between the two flap responses firmly supports the validity of the trim

and response solution procedure used in this study.

8.1.2.3 Stability in Forward Flight

Comparison of stability information is based upon the real part of the characteristic

exponent for the lag degree of freedom, which is the degree of freedom which has the po-

tential for becoming unstable in forward flight. Comparison of this information with that

obtained in Ref. 50 is presented in Fig. 18. The comparison with Ref. 50 is very good over

the entire range of advance ratios, thus lending credence to the validity of the coupled

flap-lag-torsional model and solution procedure employed in this study

8.2 VALIDATION OF THE FULLY ELASTIC BLADE MODEL

Verification of fully elastic blade model developed in this study is based on comparison

with the results obtained inRefs. 38and45. In the study of coupled rotor/fuselage vibration

reduction in forward flight using higher harmonic control presented in Ref. 38, a fully flexi-

ble blade model and solution procedure was employed which is identical to the one used
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in thisstudy. ThoughRef.38incorporateda flexiblefuselagein themathematicalmodel,

trim andresponseresultswerepresentedforthe isolatedbladecaseforvalidationof the

flexibleblademodel. However,sinceRef.38doesnotpresentanystabilityresults,com-

parisonswiththat referencecouldonlybeusedto validatethetrim andresponseportion

of themodelusedin thisstudy.

Stabilityresultsin forwardflightwhichcanbeusedfor modelverificationcanbefound

in Ref.45. Thefullyelasticblademodelutilizedin Ref.45to studyvibrationreductionon

isolatedrotorbladesin forwardflightusinghigherharmoniccontrol,is basedon thesame

set of equationsof motionusedin thisstudy. However,a Galerkintypefinite-element

methodcombinedwithan implicitformulationwas usedin Ref.45. Cubic interpolation

polynomials were used for the modeling of flap and lag bending, and a quadratic interpo-

lation polynomial was used for the modeling of torsion. Each finite-element therefore has

a total of 11 degrees of freedom: displacement and slope at each end of the element for

flap and lag bending: and rotation at each end of the element and also at a midelement

node for torsion. A normal mode coordinate transformation based upon one torsional, two

lag and three flap rotating coupled modes, was used to reduce the number of degrees of

freedom.

Furthermore, Ref. 45 employed an implicit unsteady aerodynamic formulation based

upon a finite-state, time-domain model for the unsteady aerodynamic effects. A simple

reverse flow model was used in which both the drag and the lift change sign inside the

reverse flow region. Flap trim and quasilinearizalion were used to obtain the trim and

blade response. Since an implicit aerodynamic formulation is employed, the derivatives

of the aerodynamic loads required for the stability analysis were calculated using finite

differences.

While there are significant differences between the aeroelastic analysis used in Ref. 45

and the analysis presented in this study, it was reasonable to expect similar results from

the two approaches since they are based upon very similar equations of motion. Further-

more, Ref. 45 contains some results generated using full propulsive trim and quasisteady

aerodynamics; although the apparent mass terms were neglected in the calculations.
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Therefore comparison with selected results from Ref. 45 was deemed to play a useful role

n validating the fully elastic blade model developed in this study.

The blade configuration used for model verification is presented in Table 4. The data

In that table have been non-dimensionalized using M b , R and (1/_) for mass, length and

time, respectively. The configuration represents a uniform soft-in-plane rotor blade model

with the center-of-gravity of the fuselage located a distance 0.5R below the hub and with

the fuselage drag center located a distance 0.25R below the hub.

TABLE 4

Soft-in-plane fully elastic blade configuration

Flight Data

# = variable
Rotor Data

Nb=4

c b = 2b = 0.05498 Lb = 1.0

e = 0 8pt = 0
coF = 1.123, 3.41, 7.65 a o = 2r_

_"_L = 0.732, 4.485 Cdo = 0.01

e_T1 = 3.17 Cmo = 0.0
7' = 55 a = 0.07

Helicopter Data

Cw -- 0.005 fCdf= 0.01AR
XF A z 0.0 ZFA = 0.25

XFC = 0.0 ZFC = 0.5

8.2.1 Trim Solution in Forward Flight

A comparison of the trim state of the rotor at different advance ratios with the results

obtained in Refs. 38 and 45 is presented in Figs. 19 and 20. Two sets of trim results which

were obtained in Ref. 45 are presented. The first set of trim results was generated in Ref.

45 using flap trim, which represents a propulsive trim procedure in which the blade flexi-

bility is modeled with a linear flapping equation of motion for the first flap mode only. The

second set of trim results was obtained in Ref. 45 using a propulsive trim procedure in

which all blade degrees of freedom are included; however only the constant and first har-

monics of the blade response are used to calculate the trim variables. For both setsoftrim
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results from Ref. 45, a simplified version of the aeroelastic model is used, in which only four

rotating coupled modes are used to represent the flexibility of the blade and the mode

shapes are calculated using only two finite elements. In addition, quasisteady aerodyna-

mics (without apparent mass terms) was used and constant inflow was assumed.

The trim results fromRef. 38 compare very favorably with the results of this study This

is to be expected since the blade models and solution procedures are essentially identical.

However, the two sets of results from Ref. 45 do not compare as favorably. Of the two sets,

the set of results obtained using flap trim compare more favorably, especially in the rotor

angle of attack and the sine cyclic pitch input. One would expect that the propulsive trim

results would compare better than the flap trim results, however recall that only the con-

stant and first harmonics of the blade response were retained in the calculation of the trim

state by Ref. 45, while the constant part and the first five harmonics (N H = 5) are retained

in this study. The full trim procedure used byRef. 45 represents an improvement over the

flap trim procedure, though it is not as complete as the one used in this study. Reference

45 also employed a different reverse flow model from that used in this study, which can

also significantly influence the trim results. Recall that in Ref. 45the sign on both the drag

and the lift was switched inside the reverse flow region, while in this study the lift was set

to zero.

8.2.2 Response Solution in Forward Flight

A comparison of tip response results for an advance ratio of/_ = 0.3 is presented in

Fig. 21. The tip response has been non-dimensionalized with respect to the radius of the

blade. Since the flap trim results ofRef. 45compared better than the full trim results to the

results of this study, the tip response plotted in Fig. 21 represents the response obtained

using flap trim. The blade response in Ref. 45 was obtained using quasilinearization. It

should be emphasized that the results in Ref. 45 were calculated using unsteady aero-

dynamics.
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Onceagainverygoodagreementwith Ref. 38 is obtained. However there is a signif-

icant discrepancy between the results obtained in this study and the response found in Ref.

45. While the response in Ref. 45 was obtained for a slightly different trim state, the dis-

crepancy in the blade response can be primarily attributed to the difference in the reverse

flow models. The sign on the lift is switched inside the reverse flow region in Ref. 45, in-

stead of being set equal to zero as done in this study. This produces a greater imbalance

in the aerodynamic loads acting on the advancing and the retreating side of the rotor disk,

which in turn results in a much lower flap response in Ref. 45. Comparison of the flap re-

sponses presented in Fig. 21 reveals that on the advancing side of the rotor disk the flap

responses are very similar, however the responses diverge on the retreating side, the re-

sponse in Ref. 45 exhibits much smaller flap angles. Thus variations in the amplitude of

the flap response in Ref. 45 are considerably greater than those observed in this study.

8.2.3 Stability Results in Forward Flight

A comparison of the stability results calculated in the present study is compared with

those obtained in Ref. 45. Results are obtained using both the soft-in-plane blade (

(OL1 =0.732/rev) presented in Table 4, and the stiff-in-plane blade configuration (

Q)L1 _- 1.42/rev) presented in Table 5.

The stability results in Ref. 45 were obtained assuming quasisteady aerodynamics

(without apparent mass terms) using flap trim combined with a quasilinearization proce-

dure to obtain the time dependent equilibrium position. Finite differences were used to

obtain the stability derivatives of the aerodynamic loads. Floquet theory was used to obtain

the characteristic exponents of the linearized system from the value of the state transition

matrix at the end of one period; which in turn was obtained in a single-pass using DE/STEP.

A comparison of the real part of the characteristic exponents associated with each

mode is plotted versus advance ratio in Figs. 23 through 24 for the soft-in-plane blade case.

Overall the comparisons are favorable, though there are small differences for each of the

modes. Since it is the lag degree-of-freedom which is the critical degree-of-freedom for
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TABLE5

Stiff-in-planefullyelasticbladeconfiguration

FlightData
/1 = variable

Rotor Data

Nb = 4
C b = 2b = 005498 Lb = 1.0

e =0 8pt =0
_F ---- 1.123, 3.41, 7.65 ao= 2_
(O L : 1.42, 8.75 Cdo = 0.01
(/)ml : 3.17 Cmo = 0.0
7 = 5.5 (_ = 0.07

Helicopter Data

C w -- 0.005 fCdf = 0.01A R
XFA : 0.0 ZFA = 0.25
XFc = 0.0 ZFC = 0.5

stability, the real part of the characteristic exponent of the first and second lag modes are

plotted separately from the other modes in Fig. 22. The real part of the characteristic ex-

ponent is a measure of the damping of that mode. It is evident from Figs. 22 and 23 that

the damping in lag is the lowest and therefore it is the lag mode which can potentially be-

come unstable first. The comparison of the real part of the characteristic exponents for the

first two lag modes with Ref. 45 is favorable, though there is a small discrepancy belween

the first lag mode results at the higher advance ratios, and between the second lag mode

results at the lower advance ratios. There are three probable sources for these discrep-

ancies: 1) the difference in the reverse flow models; 2) the difference in the trim proce-

dures; and 3) the fact that in Ref. 45 the apparent mass terms are neglected in the

quasisteady aerodynamics. The apparent mass terms introduce various higher order

terms; and thus they may have an effect on blade stability, which is sensitive to higher or-

der terms. These apparent mass terms become more important as the advance ratioin-

creases, and thus may partially explain the discrepancy between the first lag mode results

evident at the higher advance ratios. Another factor which could explain the difference in

the first lag mode results is the difference in the reverse flow models. It should be noted

that this difference increases at the higher advance ratios. However, this cannot explain
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the differencedisplayedin thesecondlag modestabilityresultsat low advanceratios.

Onepossibleexplanationforthisdiscrepancyis relatedto theuseof finitedifferencesto

obtainthestabilityderivativesof theaerodynamicloadsin Ref.45. Sincethe real partof

the characteristicexponentof the secondlag modeis verysmall,its valuecanbevery

sensitiveto theaccuracyofthefinitedifferenceapproximationforthisstabilityderivative.

A comparisonoftherealpartofthecharacteristicexponentsforthefirsttwoflapmodes

is presentedinFig.23,andsimilarinformationis presentedforthethirdflapmodeandthe

fundamentaltorsionalmodein Fig.24. Theresultscomparewell with thoseobtainedin

Ref.45,buttherearesomesmalldifferences.Againtheseminordifferencescanbeattri-

butedto thedifferencein trimprocedures,reverseflowmodels,and,to a lesserextent,

on theabsenceofapparentmasstermsin theexpressionsfortheaerodynamicloadsused

byRef.45.

A comparisonof therealpartof thecharacteristicexponentscalculatedin this study

with the resultsobtainedin Ref.45 for the stiff-in-planebladecase (LOLl = 1.42/rev) is

presented in Figs. 25 through 27. Comparison of the real part of the characteristic expo-

nents for the first two lag modes are presented in Fig. 25, for the first two flap modes in Fig.

26, and for the third flap and first torsion modes in Fig. 27. Overall the comparisons are

favorable, except that Ref. 45 predicts an instability in the fundamental lag mode for ad-

vance ratios greater than 0.4 which was not observed in the model of this study. The rea-

son Ref. 45 obtained this instability is not known. It should be noted, however, that

comparisons which were made recently[16] with an independent researcher employing a

similar blade model and solution procedure, verified the stiff-in-plane results obtained in

the present study.

161



8.2.4 Vibratory Response in Forward Flight.

Results for the 4/rev vibratory hub shears and hub momenls in forward flight were

presented in Ref. 45. It is useful to also compare vibratory loads between various studies

before embarking on research aimed at reducing these vibratory loads.

The 4/rev vibratory hub shears and moments calculated in Ref. 45, for the case of

quasisteady aerodynamics, were obtained using flap trim and quasilinearization, instead

of the full trim harmonic balance procedure used in the present study. Furthermore, the

integration around the azimuth, required in the harmonic analysis of the vibratory hub

loads, was performed in Ref. 45 using a trapezoidal integration scheme, in contrast to

30-point Gaussian quadrature used in this study. It was not stated in Ref. 45 how many

points around the azimuth were used in the integration scheme.

A comparison of the magnitudes of the 4/rev vibratory hub shear and moment compo-

nents calculated in this study with results obtained from Ref. 45 are plotted in Figs. 28

through 30 for the soft-in-plane blade case. It should be noted that the results presented

in Ref. 45 represented peak-to-peak values and were scaled by dividing by the non-

dimensional flapping inertia Ibwhich is equal to 1/3 for an uniform blade. Therefore in or-

der to compare them with the results in this study the values from Ref. 45 were divided by

two and multiplied by I b .

For each component, the amplitude of the hub shears obtained in this study are smaller

than those obtained in Ref. 45, especially the vertical component, and the amplitudes of the

hub moments are slightly larger. The difference in the amplitudes can be attributed to the

difference in the reverse flow models and the trim procedures. Recall from the comparison

of the blade tip response in forward flight presented earlier, the flap response obtained in

Ref. 45 was greater due to the different reverse flow model and trim solution used by that

reference. It should be noted that as the advance ratio increases, the effects of the differ-

ence in the reverse flow model becomes more important.

Comparisons of the 4/rev hub shear and moment amplitudes with Ref. 45 for the case

of the stiff-in-plane blade are presented in Figs. 31 through 33. Examination of these figures
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showsthatthecorrelationof hubloadswithRef.45is betterin the case of the stiff-in-plane

blade

Overall, the comparisons with both Ref. 38 and 45 are considered to be quite reason-

able, thus lending credence to both the blade model and solution procedure used in this

study. Even though there exist some important differences between the aeroelastic anal-

ysis of Ref. 45 and the one used in this study, the comparisons presented here are con-

sidered to more than adequately justify the validity of the present aeroelastic analysis.
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Chapter IX

CONTROL STUDIES USING THE OFFSET-HINGED SPRING RESTRAINED BLADE MODEL

In this chapter, the global and local deterministic controllers, implemented through an

individually controlled aerodynamic surface on each blade are employed to achieve si-

multaneous reduction of the vibratory hub shears and hub moments in forward flight. To

demonstrate the effectiveness of this control approach in reducing vibrations, the degree

of vibration reduction achieved is compared with conventional IBC, in which the entire

blade is oscillated. Comparisons of the control input amplitudes and power required to

implement control for the two control approaches, are also made. Furthermore, these

comparisons are studied for a reasonably wide range of blade fundamental rotating

torsional frequencies, to assess the influence of blade torsional flexibility on the vibration

reduction potential of this new approach.

9.1 SIMULTANEOUS REDUCTION OF THE VIBRATORY HUB SHEARS AND MOMENTS

For the results presented in this chapter, only the vibration magnitudes were penalized

in the quadratic cost functional

J = zTEWz]Z, (9.1)

For this case the quadratic cost functional J consisls of the weighted sum of the squares

of the amplitudes of the hub shears and moments

_TJ= wF 2F+ wMz,,z,,

and consequently represents a measure of the vibration levels experienced during the ith

step. All six components of the vibratory hub loads are considered to be of equal impor-

tance in terms of reduction. However, duetothe non-dimensionalization scheme used in

this study, the relative magnitude of the amplitudes of the baseline vibratory hub moments
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are an order of magnitudesmallerthan the amplitudesof the baselinevibratoryhub

shears.Therefore,in thistrendtypeof study,toensurethatanequivalenllevelofvibration

reductionis achievedin boththehubshearsandhubmoments,theweightingWMon the

squaresof the hubmomentamplitudeswasscaledup by a factorof 10relativeto the

weightingWFon thesquaresofthehubshearamplitudes.

Theglobalcontrollerfor the casewhenonlythe vibrationsare penalized is obtained

by substituting [Wu] = [W_] = [0] into Eq. (7.4) to yield

u, = - [Do]-I[T0]TEWz]Zo (9.2)

where

[Do] = [To]TEWz][T0] (9.3)

It is evident from Eq. (9.2) that in this case the global controller converges in a single step.

However, the control input given by Eq. (92) represents the true "optimal" input only if the

system is truly linear. Since the assumption of moderate deflections made in the problem

formulation introduces geometric nonlinearities into the problem, the system is nonlinear

and therefore the local controller, which is based on a linearization of the problem about

the current control, must be used in order to obtain the true "optimal" control input.

The local controller for this case is obtained by substituting i-Wu] = [WL_] = [0] into Eq.

(7.9) to yield

u, = - [D'-I]-I[Ti-I]T[Wz]Z,-I +-*%-I (94)

where

[D,-1] = [T,-1]T[Wz][T,-1] (9.5)

Equation (9.4) is in the form of a closed-loop controller where feedback of the measured

vibration levels is used to determine the control input during each control step. Thus the

local controller represents an iterative scheme and should converge to the true "optimal"

control input for the nonlinear syslem represented by the helicopter.
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Thebladedataemployedin thevibrationreductionstudiespresentedinthischapteris

giveninTable6. ExceptfortheparametersCw,7 and _, the data in the table has been

non-dimensionalized using the dimensional parameters R, M b and (1/(2) for length, mass

and time, respectively. Furthermore, all results presented in this chapter are non-

dimensionalized using these characteristic parameters. The data in Table 6 corresponds

to a soft-in-plane uniform blade configuration which is used in the active control studies

involving conventional IBC. The data employed in the studies of control implemented

through an actively controlled flap on each blade is the same as presented in Table 6 ex-

cept that each blade incorporates a 20% span, 1/4 chord partial span trailing edge flap

centered about the 75% span blade station. In addition, to account for the 5% higher ef-

fective solidity due to the presence of a trailing edge flap on each blade, the weight coef-

ficient Cw is inCreased by5%. This ensures that the two blade configurations have roughly

equivalent blade loading, as represented by CT/_ .

TABLE 6

Spring restrained blade data

Flight Data
#=0.3

Rotor Data

cb : 2b = 0.03927
Lb = 1.O
e = 0.0

i= 0.O
= O0
= 0.0

Xib = 0.0
X A = O.0

X b = 0.5

Ib = 0.3333
Jb = 00001
Xlc ---- 0.0

Helicopter Data
C w -- 0.005
XFA = 0.0
XFC = 0.0

2.5 < LOT1 <-- 5.0

U_F1 ---- 1.15
eJ,L1 ---- 057

CO -- O.0
C# = 0.0
C:, = 0.0
ao = 5.70
Cd0 = O.01
Cmo = -0.02
Nb----4

7=5.0
= 0.05

fCdf _- 0.01A r
ZFA = 02

ZFC = 0.2

The uncontrolled (baseline) value of the quadratic cost functional obtained using the

blade configuration incorporating a trailing edge flap is compared in Fig. 34 to the value
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obtainedusingthe conventional blade configuration. The reason for the small difference

in the uncontrolled vibration levels evident in the figure is due to the minor difference in

the blade configurations. However, since the controlled vibration levels achieved by im-

plementing the two control approaches are a small fraction of their uncontrolled values,

this difference is considered to be unimportant.

Examination of Fig. 34 reveals that the highest uncontrolled vibration levels are ob-

tained for the case of the torsionally soft blade with O'S'T1 --_ 2.5/rev. As the torsional fre-

quency of the blade is increased above 25/rev, the vibration levels decrease sharply until

they reach a fairly constant level around COT1 ---- 4/rev. This sensitivity of the vibration

levels to changes in the torsional stiffness of the blade can be attributed to the sensitivity

of the aerodynamic loads to changes in the angle of attack of the blade. As the blade be-

comes stiffer in torsion, the blade torsional response decreases in magnitude, resulting in

lower vibratory loads, in this case.

The conlrol studies presented in this chapter were based upon a control input signal

consisting of a combination of a 2, 3, 4 and 5/rev harmonic input signal (i.e. Nma x = 5). The

3, 4, and 5/rev input frequencies were selected since a 4/rev input signal introduced in the

nonrotating system through a conventional swashplate, which is frequently used in HHC

studies on four bladed rotors, generates a signal with 3, 4 and 5/rev components in the

rotaling reference frame. The 2/rev input frequency was added to this set since it was

found to be approximately as effective as the other frequencies in achieving vibration

reduction[39]. Input harmonics greater than 5/rev were rejected since it was found that

these higher input harmonics adversely affected the 8/rev vibration levels, the next great-

est vibration component after the 4/rev vibrations in a four-bladed rotor.

The (2_ 3, 4, 5/rev) frequency combination was selected after comparing the effective-

ness of various input frequency combinations in reducing the 4/rev vibration levels, as well

as their impact on the 8/revvibrations. This set of input frequencies was found to produce

the greatest level of reduction in the 4/rev vibrations without unacceptable increases in the

8/rev vibration levels. This is demonstrated in Figs. 35 through 38, which depict the level

of vibration reduction achieved in the 4/rev hub shears and moments using various input
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frequencycombinations,andthe resultingimpacton the8/revhubloads. Theresultsin

thefigureswereobtainedbyemployingtheglobalcontrolusingtheinputfrequencycom-

binations(3,4,5/rev),(2,3,4, 5/rev),and(2,3,4, 5,6/rev)ona bladewitha fundamental

rotatingtorsionalfrequencyof_Tl=3.0jrev . Figures35and36demonstratethe effec-

tivenessof thesethreeinputfrequencycombinationsin reducingthe4/revhubloads,and

the resultingimpacton the 8/revvibrations,whencontrolis implementedthroughtheac-

tively controlledflap. Figures37and38representcomparisonsobtainedusingconven-

tionalIBC.Thesetwosetsof figuresclearlydemonstratethattheadditionofthe2/revinput

frequencyto the(3,4,5/rev)frequencycombinationresultsinasignificantimprovementin

theeffectivenessof bothcontrolapproaches.However,whenthe6/revinputfrequencyis

included,thesmalladditionaldecreaseobtainedin the4/revvibrationsis morethancan-

celledoutbythesignificantincreaseobservedin the8/revvibrationlevels.

Theglobalandlocalcontrollerswereemployedto reducesimultaneouslythe4/revhub

shearsandhubmoments.Control was implemented through the actively controlled flap,

and also using conventional IBC, primarily forcomparison purposes. In the present case,

where only the vibration magnitudes were penalized, the global controller always con-

verged in a single step. However the local controller, which is based on a linearization

about the current control, required a number of iterations to converge. Typical iteration

histories of the local controller are presented in Figs. 39 through 42 for both control ap-

proaches. The results were obtained using a blade with a torsional frequency of

_T1--3/rev. These figures show that the controlled cost functional, plotted in Fig. 39, and

the controlled hub shears and moments, plotted in Figs. 40 through 41. converge to steady

values by the fourth iteration. Convergence was assumed to have occurred when the

change in the cost functional from the previous step was less than 1%. It was found that

the local controller always converged within three to four iterations over the entire range

of blade torsional frequencies considered.

A comparison of the controlled values of the quadratic cost functional obtained when

employing the global and local controllers is presented in Fig. 43 for both control ap-

proaches. In each case the converged value of the controlled cost functional is plotted as
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a percentageof the baselinevalue. It is evidentfromthe figurethatverysubstantialvi-

brationreductionwasachievedbybothconventionalIBCandthe activelycontrolledflap

overthe entirerangeof bladetorsionalfrequenciesconsidered.Thelocalcontrollerper-

formedbetterthantheglobalcontrollerin eachcase. InthecaseofconventionallBC,the

localcontrollersuccessfullyreducedthecostfunctionalbyatleast99.75%overtheentire

rangeof bladetorsionalfrequenciesconsidered,comparedto a reductionby onlyabout

975% achieved by employing the global controller. For the case when the control was

implemented through an actively controlled flap, the local controller was able to increase

the degree of vibration reduction from 98.25%, achieved by the global controller, to at least

99% over the entire range of torsional frequencies.

In the case considered here, where only the vibration magnitudes are penalized, the

global controller simply represents the first control step of the local controller. However,

the problem is inherently nonlinear due to the assumption of moderate deflections, and

thus the introduction of feedback will of course increase the degree of vibration reduction

which can be achieved. It is interesting to note from Fig. 43 thal as the blade becomes

relatively stiff in torsicn very little improvement in the vibration reduction effectiveness is

achieved in either control approach when the local controller is employed. This can be

attributed to the fact that the nonlinearity inherent in the system is due to lhe sensitivity

of the blade vibratory response to control. As the torsional stiffness of the blade is in-

creased, this sensitivity diminishes, reducing the strength of the nonlinearity inherent in the

syslem. Therefore. as long as the system parameters (i.e., the elements of the [T] matrix)

are known without error, little improvement in vibration reduction is to be expected from

the introduction of feedback in the case of torsionally stiff blades.

In order to examine the degree of reduction achieved in each of the vibratory hub load

components, the vertical hub vertical hub shear component is selected as a representative

indicator of all six vibratory hub load components. A plot of the baseline value of the 4/rev

vertical hub shear versus blade torsional frequency is presented in Fig. 44 for the two blade

configurations. The figure reveals that the presence of a trailing edge flap on the blade

has a very small effect on this vibratory component, as seen from the present results.
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Comparisonof the conlrolledvalueof the 4/revverticalhubshearobtainedby em-

ployingtheglobalandlocalcontrollersispresentedinFig.45for bothcontrolapproaches.

Thefigurerevealsthatverysubstanlialreductionin theamplitudeofthe4/revverticalhub

shearwasachievedby bothconventionalIBCandthe activelycontrolledflap. In both

casesthe bestreductionwasobtainedbyemployingthe localcontroller.Usingthelocal

controller,theverticalhubshearwasreducedbyat least97.5%byconventionalIBCand

byat least95%usingtheactivelycontrolledflapovertheentirerangeof bladetorsional

frequenciesconsidered.Verysimilarresultswereobtainedfortheotherfivecomponents

of thevibratoryhubloads. Overall,it appearsthatconventionalIBCis slightlymoreef-

fectivein reducingthevibratoryhubloads;however,the differencein the degreeof vi-

brationreductionachievedbythetwocontrolapproachesis small.

Comparisons of the baseline and controlled values of the 4/rev hub shears and mo-

ments achieved using the actively controlled flap and conventional IBC are presented in

Figs. 46 through 4g. The behavior of both a blade relatively soft in torsion, with _OT1 =

2.5/rev. and for a blade relatively stiff in torsion, with _T1 = 5/rev, are compared. The

degree of reduction achieved in the 4/rev hub shears and moments using the actively

controlled flap and using conventional IBC is presented in Figs. 46 and 48, respectively, for

the case of the torsionally soft blade, and in Figs. 47 and 49, respectively, for the case of

the torsionally stiff blade. The two sets of figures show that very substantial reduction in

the 4/rev hub shear and moment components was achieved by both control approaches.

In each case the local controller achieved a greater degree of vibration reduction in each

of the vibratory hub load components.

9.1.1 Control Power Requirements

A comparison of the average power required (per revolution) for the implementation

of the vibration reduction using the two control approaches is presented in Fig. 50. The

power required for conventional IBC is defined as the average power needed to drive the

blade root pitch actuators during one revolution:
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PIBC _-

Nb =4

1 j-2=[
_-_" JO -- MRx3(_ k) OlBC(0k)] d0k

k=l
(9.6)

where/)JBC(_k) represents the instantaneous additional IBC pitch input of the k-th blade and

MRx3(_k) represents the instantaneous blade root feathering moment.

Examination of Fig. 50 reveals that substantially more power is required to implement

vibration reduction using the conventional IBC approach than for vibration reduction based

on the actively controlled flap. Vibration reduction using conventional IBC required about

12 times more power at the lower blade torsional frequencies, and about 7 times more

power at the higher blade torsional frequencies. These higher power requirements appear

to be associated with the need to drive harmonically the fairly large and coupled elastic

system represented by the entire blade, as opposed to being required to drive harmon-

icallya relatively small aerodynamic surface. It is also evident from this figure that as the

torsional frequency the blade increases, the power required to implement the control in-

creases for both control approaches.

9.1.2 Control Input Requirements

A comparison of the maximum amplitudes of the optimal control input required for vi-

bration reduction by the two control approaches is presented in Fig. 51. Of course larger

control input amplitudes are required for vibration reduction when using the actively con-

trolled flap, but these angles are quite reasonable; over the entire range of blade torsional

frequencies investigated, the largest control flap deflection angle required is only 8 de-

grees. It is evident from Fig. 51 that in both control approaches, the required control input

amplitudes increase with increasing blade torsional stiffness. As the blade becomes stiffer

in torsion, the sensitivity of the system to control diminishes, thus requiring larger control

input amplitudes to achieve roughly the same degree ofvibration reduction. This important

influence of the blade fundamental torsional frequency on vibration reduction is also con-

sistent with the findings presented in Ref. 28.
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9.2 EFFECT OF MASS UNBALANCE

The results presented so far have been generated using a mass balanced flap, i.e. the

offset Xic between the hinge point and the center of gravity of the control flap is zero. When

this is true the inertial moment about the control flap hinge is clue only to the polar moment

of inertia of the control flap, denoted as Jc. Moving the center of gravity of the control flap

aft of the hinge point increases the rotational inertia and thus can have a significant impact

on the hinge moment and the amount of power required to drive the control flap. The effect

of using a mass unbalanced flap is investigated in this section by moving the control flap

center of gravity aft of the hinge point by one quarter of the control flap chord length, i.e.

Xlc = (I/4)Ccs.

A comparison of the uncontrolled vibration levels obtained using a mass balanced and

an unbalanced control flap is presented in Fig. 52. The figure shows that almost no change

is observed in the uncontrolled vibration levels when a mass unbalanced trailing edge flap

is used. Furthermore, it is evident from Fig. 53 that the impact on the controlled vibration

levels is also very small. Finally, examination of the required control input amplitudes

presented in Fig. 54 shows that the use of a mass unbalanced trailing edge flap has no

effect on the input amplitudes either. Thus, shifting the mass center of the control flap aft

of the hinge point has virtually no effect on the vibration levels or on its potential to reduce

them.

However, a comparison of the control power requirements of the mass balanced and

unbalanced control flap presented in Fig. 55 reveals that a substantial reduction in power

requirements can be obtained by using an unbalanced flap. The figure depicts a 50% (at

the higher blade torsional frequencies) to 80% (at the lower blade torsional frequencies)

reduction in power requirements for the unbalanced flap. Thus the flapping and twisting

motions of the blade, which provide inertial moments about the control surface hinge when

Xtc>0. help drive the control flap which reduces the load on the control flap servo-

actuator.
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Chapter X

CONTROL STUDIES USING THE FULLY ELASTIC BLADE MODEL

The results obtained using the flexible blade model are presented in this chapter. The

nominal data for the elastic blade configuration employed in this study is presented in Ta-

ble 7 and corresponds toa soft-in-plane blade with uniform mass and stiffness. The data

resembles approximately an MBB-105 helicopter. The data in the table (exept for Cw, y

and ,_ ) have been nondimensionalized using M b, L b and (1/_) for mass, length, and time

respectively.

TABLE 7

Elastic blade configuration used in control studies

Dimensional Data

R -- 4.91m

_) = 425RPM

M b = 52kg

Nondimensional Data

Flight Data

/_ =0.3
Rotor Data

Nb -- 4 L b = 1.0

7 = 5.5 _ = 007

c b = 2b = 0.05498 e = 0
X A = 0.O Xtb = 0.0

IMB 2 : 0.0000 8pt ---- 0.O
IMB 3 : 0.0004 a o = 2_
_F = 1.123. 3.41, 7.62 Cdo = 0.01

_L = 0.732. 4.46 Cmo ---- 0.0

2.5 _< (.Ol-1 _< 5.0
Helicopter Data

Cw = 0.005 fCdf = O.01A R

XFA : 0.0 ZFA = 0.3

XFC = 0.0 ZFC = 0.3

The blade data in Table 7 corresponds to a conventional blade configuration (ie., no

trailing edge flap) that is utilized in the control studies involving conventional IBC In the

studies of control implemented through an actively controlled flap, the same blade data is
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used, except that each blade incorporates a partial span trailing edge flap which is 12%

of the blade span, 1/4 of the blade chord, and centered about the 75% blade span position.

The addition of the trailing edge flap to the blade span alters the mass distribution of the

blade, which changes the natural frequencies of vibration. In this study, the bending and

torsional stiffnesses of the flexible blade incorporating the control flap were increased

(slightly) to compensate for the additional mass, such that the resulting fundamental fre-

quencies match those of the conventional blade configuration presented in Table 7. This

was done to similate the BO-lO5blade, as it exists. However, to account for the 3% higher

effective rotor solidity due to the presence of a trailing edge flap on each blade, the value

of the weight coefficient C w used in lhe control studies involving the control flap is 3%

larger than the value shown in Table 7. This ensures that the two blade configurations

have roughly equivalent blade loading, as represented by CT/_ .

The local controller represented by Eq. (7.9) was employed to produce simultaneous

reduction in the vibratory hub shears and moments using the actively controlled flap.

Conventional IBC was also implemented for comparison purposes. In both control ap-

proaches an input signal consisting of 2, 3, 4, and 5/rev harmonic components in the ro-

tating reference frame was utilized This combination of frequencies was found to produce

the greatesl degree of reduction in the 4/rev hub loads without causing a significant in-

crease in the 8/rev hub loads, which are the next largest component of the vibratory loads

in a four-bladed rotor.

In the active control studies presented in this chapter only the vibration levels are pe-

nalized (i.e., [Wu]= EWA] = [0]). In this case the quadratic cost functional J consists of

the weighted sum of the squares of the amplitudes of the hub shears and hub moments,

and thus represents a measure of the vibration levels experienced during the i-th control

step. The weightings on the squares of the hub moment amplitudes were scaled by a

factor of ten relative to the weightings on the squares of the hub shear amplitudes. This

was found to be necessary in order to achieve roughly the same degree of reduction in the

vibratory hub shear and hub moment components.
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A comparisonof theuncontrolled(baseline)valuesof thequadraticcoslfunctionalfor

a conventionalbladeanda bladeincorporatinga trailingedgeflapis presentedinFig.56.

Thecomparisonis conductedovera rangeof bladefundamentalrotatingtorsionalfre-

quencies,startingfroma bladewhichis relativelysoftin torsion,LOT1= 2.5/rev, to a blade

which is relatively stiff in torsion _Tl=5.0/rev . Figure 56 reveals that the addition of a

relatively small trailing edge flap to the outboard sections of the blade span results in a

25-40% decrease in the baseline value of the cost functional, representing a 13-23% re-

duction in the 4/rev hub load magnitudes. It should be noted that the offset between the

center of gravity of the blade cross-section and the elastic axis is zero for this case. The

presence of a trailing edge flap on the blade shifts the center of gravity behind the elastic

axis, which has the effect of increasing the inertial coupling between the flapping and

twisting motions of the blade. This coupling appears to have a beneficial effect onlhevi-

bration levels in this case. Thus in effect, the mass of the trailing edge flap may be acting

like a tuning mass, which is sometimes used to tailor the blade vibratory response.

The minimum value of the quadratic cost functional achieved by employing the local

controller implemented through the actively controlled flap is presented in Fig. 57. The

results obtained using conventional IBC are presented for comparison. The figure shows

that very substantial vibration reduction was achieved by both control approaches over the

entire range of torsional frequencies considered, and that the level of reduction produced

by the actively controlled flap is comparable to conventional IBC. In fact, for blades with

a torsional frequency in range 3.1 _<_]-1 -< 3.7 , the level of vibration reduction produced

by oscillating the relatively small trailing edge flap exceeds that achieved by oscillating the

entire blade. This occurs when the torsional frequency of the blade e_T1 is close to the

rotating frequency of the second flap bending mode, which is given by (OF2= 3.7/rev when

xc = 0.75R.

A very important capability lacking in conventional IBC. where the entire blade under-

goes a uniform pitch change about the blade root. is the ability to cyclically vary the twist

distribution of the blade. It was shown by Lemnios and Smith[28] in their study ofacon-

trollable twist rotor (CTR) configuration that improvements in rotor performance, and sig-
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nificantdecreasesinbladebendingamplitudes,couldbeachievedbycyclicallyvaryingthe

twist distributionof theblade. Intheir study,a servo-flapsimilarto theone usedin this

studyto producetheexternaltorsionalmomentsneededto alterthetwistdistributionofthe

blade. Thustheabilityof theactivelycontrolledflapto affectthe blade'stwist mayhelp

explainits superiorperformancecomparedto conventionalIBCfor bladeswithatorsional

frequencynearthefrequencyof thesecondflapbendingmode. Theincreaseincoupling

betweenthesetwomodesshouldincreasethe potentialof the activelycontrolledflapto

affectthevibratoryresponseof theblade,andhencethevibrationlevels.

Examinationof Fig.57showsthattheeffectivenessof conventionalIBCis relativelyin-

sensitiveto variationsinthetorsionalstiffnessof the blade,whilethefiguredepictsa de-

creaseincontrolflapeffectivenessatthehigherbladetorsionalfrequencies.Astheblade

becomesstifferin torsion,theabilityofthecontrolflapto affectthetwistdistributionofthe

blade is reduced,thus reducingits effectivenessin controllingvibrations. Practically,

though,theoptimalcostfunctionalat thehighertorsionalfrequenciesisstill verysmall.

Thedegreeof reductionachievedineachof the4/revhubloadcomponentsbythetwo

controlapproachesis shownin Figs.58through63by comparingthe reducedhubshear

andmomentamplitudeswith theirbaselinevalues. Comparisons are presented for the

torsional frequencies _Tl = 2.5. 3.0. 3.5, 4.0, 4.5 and 5.0/rev. Examination ofthese figures

reveals that the actively controlled flap successfully reduced the hub shears the hub shear

components by at least 80% over the entire range of torsional frequencies, and reduced

the hub moment components by at least 50%. The best performance of the actively con-

trolled flap, obtained at (0]-1 = 3.5/rev, consisted of a g8% reduction in the hub shear com-

ponents, and a 92% reduction in the hub moment components. The effectiveness of

conventional IBC was fairly constant over the entire range of torsional frequencies con-

sidered, reducing the hub shears by at least 97%, and the hub moments by at least 87%.

A comparison of the maximum control input amplitudes required for vibration reduction

by the two control approaches is presented in Fig. 64 Of course the input angles required

by the actively controlled flap were much larger than the IBC pitch angles, but these de-

flection angles were quite reasonable: over the entire range of blade torsional frequencies
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investigated,the largestcontrolflapdeflectionanglerequiredwasonlytendegrees.An

increasein controlamplitudeswithincreasingtorsionalstiffnessisevidentforbothcontrol

approaches;howeverthegreatestincreaseis in therequiredcontrolflapdeflectionangles.

Thiscanbeattributedto thefactthatasthebladebecomesstifferin torsion,muchlarger

inputanglesarerequiredto affectchangesin thetwistdistributionoftheblade.

Finally,a comparisonof the powerrequiredto implementcontrolthroughtheactively

controlledflapandconventionalIBCis presentedinFig.65. Thepowerrequiredto drive

thecontrolsurfaceactuatorsis definedbyEq.(7.17)andthepowerrequiredto implement

conventionalIBCis definedbyEq.(9.6).Figure65revealsthatoscillatingtheentireblade

requiresconsiderablymorepowerthanoscillatingthe relativelysmalltrailingedgeflap;

conventionalIBCrequiresanywherefrom3 times(onatorsionallystiffblade)to 10times

(ona torsionallysoftblade)thepowerfor its implementation.Thepowerrequirementsof

bothcontrolapproachesincreaseasthebladebecomesstifferintorsion,asshownin Fig.

65. As the bladebecomesstifferin torsion,it becomesmoredifficult,andhencemore

costly,to alterthevibratoryresponseoftheblade.

10.1 COMPARISONS WITH THE SPRING RESTRAINED BLADE MODEL

In this section results generated using the fully elastic blade model are compared with

results obtained using the simple offset-hinged spring restrained blade model to determine

the effect of the refined blade model on the dynamic behavior of the blade. The elastic

blade data presented in Table 7 is employed to obtain the results using the simple spring

restrained blade model. To provide valid comparisons between the two blade models, the

stiffnesses of the torsional root springs are set such that the resulting rotating frequencies

in flap, lead-lag and torsion match the fundamental rotating frequencies of the flexible

blade. There is no unique combination of the root offset and spring stiffnesses which yields

the appropriate fundamental rotating frequencies. Thus, to obtain a unique sel of spring

stiffnesses, the root offset in the spring restrained blade model is set to zero, which is the

value of e used in the flexible blade model.
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10.1,1 Trim and Response Solution in Forward Flight

The trim state of the rotor obtained using the two blade models is plotted versus ad-

vance ratio in Figs. 66 and 67 for a blade with a torsional frequency Of_T1 = 3.17/rev. The

inflow ratio and rotor angle of attack are plotted in Fig. 66 and the trim pitch settings are

depicted in Fig. 67. Examination of these two figures reveals that the use of a more realistic

dynamic model, as represented by the fully elastic blade model, has very little impact on

the trim results. Except for the collective pitch angle, which is slightly larger in the case

of the flexible blade model, the trim results are almost identical. However, a comparison

of the blade tip response results presented in Fig. 68, reveals a considerable difference in

response solutions. Though the character of the response solutions are very similar be-

tween the two blade models, as seen in Fig. 68, the tip deflection amplitudes obtained using

the flexible blade model are larger. The greatest difference is evident in the twist de-

flection of the blade, which may explain the slightly higher collective pitch settings required

by the flexible blade model seen in Fig. 67. A higher pitch setting would be required to

offset the larger negative elastic twist of the flexible blade model.

10.1.2 Vibratory Hub Loads

The importance of the modeling of the blade flexibility when calculating vibration levels

was investigated by comparing the amplitudes of the 4/rev hub shears and moments ob-

tained using the simple offset-hinged spring restrained blade model with those obtained

using the more realistic flexible blade model. The vibration magnitudes, calculated for a

blade with a torsional frequency of C_T1= 3.17/rev, are plotted at different advance ratios

in Figs. 69 through 71. The results demonstrate that the improvement in the dynamic

modeling capability afforded by the fully elastic blade model results in a dramatic increase

in the calculated values of the vibratory hub loads. Except in the case of the vertical hub

shear component, which is almost identical for the two blade models, the amplitudes of the

4/rev hub loads obtained using the fully elastic blade model are much greater than those

predicted by the spring restrained blade model: the longitudinal and lateral hub shear
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amplitudesareabout100%larger,andthehubmomentamplitudesaremorethan200%

larger. Thisdramaticincreasein thevibratoryhubloadscanbeattributedat leastin part

to the largerresponseamplitudesobtainedusingtheflexibleblademodel,depictedinFig.

68 Thegreatestdifferenceis evidentin thetorsionaldeflectionof the blade,whichcan

havea substantialimpacton thevibratoryaerodynamicloads.

10.1.3 Active Control Studies

The uncontrolled (baseline) values of the quadratic cost functional obtained using the

two blade models are compared in Fig. 72. The figure depicts significantly higher vibration

levels for the flexible blade model. This can be attributed to the fact that the 4/rev hub

loads obtained using the flexible blade model are much larger than those predicted by the

simple spring restrained blade model, as shown in Figs. 69 through 71. Recall that the

greatest difference was evident in the hub moment components, which have been weighted

more heavily in the quadratic cost functional than the hub shear components. It is inter-

esting to note from Fig. 72 for the simple spring restrained blade model, almost no change

is evident in the vibration levels due to the addition of a trailing edge flap to the blade span.

The minimum value of the quadratic cost functional achieved using the actively con-

trolled flap and conventional IBC implemented on the spring restrained blade model is

compared in Fig 73 with the results obtained using the fully elastic blade model. The figure

demonstrates thal, despite the substantially greater vibration levels obtained using the

flexible blade, both control approaches implemented on the flexible blade were still very

effective in achieving substantial vibration reduction. In fact, comparison of the results

obtained using the two blade models reveals that better vibration reduction was achieved

in the case of the flexible blade model. It appears that the improvement in the dynamic

modeling capability provided by the flexible blade model results in an increase in the po-

tential of either control approach to reduce vibrations.

The most important difference between the two blade models evident in Fig 73 is the

difference in the degree of degradation displayed in the effectiveness of the actively con-
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trolled flapat the higherbladetorsionalfrequencies.Theseverityof the reductionin

controlflapeffectivenessdisplayedin thesimplespringrestrainedblademodelmaybe

attributableto the factthatthis model,inwhichthebladeflexibilityis assumedto becon-

centratedatthebladeroot,isunableto modelchangesin twistdistribution

Themaximumcontrolinputamplitudesobtainedusingthetwoblademodelsarecom-

paredin Fig.74. Thefigurerevealsthat,despitethe muchlargeruncontrolledvibration

levelsobservedin theflexibleblademodel,therequiredconventionalIBCpitchinputam-

plitudesarealmostidenticalfor thetwoblademodels.Thisis nottrue in thecaseofthe

activelycontrolledflap;exceptfor bladesrelativelysoft in torsion(COT1 --<3.5/rev), much

larger control flap deflection angles are required to reduce vibrations in the case of the

flexible blade model, in some cases as much as 50% larger.

The power requirements obtained using the two blade models are compared in Fig. 75.

The figure shows that the difference in power requirements between the two control ap-

proaches is very similar between thetwo blade models.

10.2 IMPORTANCE OF THE CONTROL FLAP SPANWISE LOCATION

In the nominal configuration the trailing edge flap is centered about the 75% span po-

sition (i.e., xc = 0.75R), which is very close to the node location of the second flap and lag

bending modes. It was postulated that centering the trailing edge flap about this node point

would minimize its potential for exciting the second bending modes of the flexible blade.

The effect of locating the centroid of the trailing edge flap away from this node point was

investigated by moving the centroid of the control flap outboard to the 85% span position

(x c -- 0.85R). The effect on the uncontrolled vibration levels is shown in Fig. 76 by com-

paring the baseline value of the cost functionaIJ forx c=O.75Rand xc=0.85R The figure

reveals that moving the trailing edge flap outboard of the node results in a 50% decrease

in the baseline value of J, which represents about a 30% reduction in the baseline vi-

brations.
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Theeffectof movingthetrailing edge flap outboard on its ability to reduce vibrations is

shown in Fig. 77. One might expect that moving the control flap outboard on the blade

span, in the direction of greater effective air speeds, would have a beneficial effect on the

vibration reduction potential of the actively controlled flap. However, Fig. 77 depicts a

significant reduction in control flap effectiveness when the flap is moved outboard, for

blades with a fundamental rotating torsional frequency in the vicinity of 4/rev. It is inter-

esting to note that this is very close to the rotating frequency of the second flap mode,

which is given by _OF2 = 3.97/rev when xc = 0.85R. Thus it appears that moving the

centroid of the trailing edge flap away from the node location of the second flap mode,

where the interaction between the second flap mode and the fundamental torsional mode

is minimized, has a detrimental effect on the vibration reduction potential of the actively

controlled flap when the frequencies of the two modes are close. However, Fig. 77 shows

a substantial increase in the vibration reduction effectiveness of the control flap for blades

relatively stiff in torsion when xc -- O85R.

The effect of moving the centroid of the control flap outboard on the required control flap

deflection angles is depicted in Fig. 78. The figure reveals that the decrease in control flap

effectiveness in the vicinity of _,OT1= 4/rev is accompanied by a small increase in control

input amplitudes, while a minor decrease in control angles is observed in the vicinity of

LOT1_-- 4.5/rev. It should be noted that (f)T1 = 4.5/rev is very close to the rotating frequency

of the second lag mode. which in this case is given by (OL2 _-- 4.48/rev.

Finally, the effect on the power requirements of the actively controlled flap when it is

moved outboard is presented in Fig. 79. The figure shows that the increase in control an-

gles in the vicinity of COT1 ---- 4/rev is accompanied by about a 100% increase in the power

required to actuate the control flap. However, for blades relatively stiff in torsion (

C,_T1> 4.5/rev), there is about a 70% reduction in the power required.

Figures 77 through 78 demonstrate that, in the present case. coupling of the funda-

mental torsional mode with the second flap bending mode has a detrimental impact on

control flap performance. On the other hand, coupling with the second lead-lag mode ap-

pears to have a beneficial impact on control flap performance. Finally, moving the control
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flapoutboardon torsionallystiffbladesimprovesitsvibrationreductioneffectivenessand

resultsin a significantdecreasein powerconsumption.

10.3 EFFECT OF HINGE MOMENT CORRECTION

The influence of changes in the value of the aerodynamic hinge moment correction

factor C t on the performance of the actively controlled flap was studied using the flexible

blade model, by changing the nominal value of C t = 0.6, used up until this point, to the more

conservative value of Cf=O.5. Recall that C r is used not only to scale the aerodynamic

hinge moment, but also to scale the additional aerodynamic lift and pitching moment

produced by the partial span trailing edge flap. A comparison of the degree of vibration

reduction achieved using the actively controlled flap for the two different values of C t is

presented in Fig. 80. The figure shows that decreasing the value of Cf by about 15% has

almost no effect on the potential of the actively controlled flap to reduce vibrations How-

ever, a comparison of the control input requirements, shown in Fig 81, and the power re-

quirements, shown in Fig. 82, reveal that decreasing Cf by about 15% results in a

corresponding increase in both the input angles and power requirements to implement

control.

10.4 EFFECT OF COMPRESSIBILITY CORRECTION

The effect of introducing compressibility correction was also studied using the flexible

blade model. Compressibility effects are accounted for using the PrandtI-Glauert cor-

rection factor, defined as

,t"

M 2 (10.7)
,6 = \ 1- x,,J

to obtain the compressible lift curve slope:

a° a° (10.8)a -

/3 X. 1 M2-- X._
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where Mx,,., is the local Mach numberal x, _. The local Mach number on the blade can

be expressed as

+
Mx _, -

ca

where c a represents the speed of sound in air. If the dynamics of the blade are neglected,

then the local Mach number can be approximated as[25]

= ( x +/_ sin _) (10.9)
Mx. _ Mt_p Lb

where Mr, p=g._R)/c a represents the Mach number at the blade tip in hover. In the results

presented in this seclion the compressible lift curve slope was obtained using the value

Mr, p : 065. which is a typical value associated with modern helicopter rotors[24].

Figure 83 presents comparisons of the baseline (uncontrolled) values of the cost func-

tional obtained using the incompressible and the compressible lift curve slopes. The

comparisons are presented for both the conventional blade configuration and the blade

configuration incorporating the trailing edge flap. If is evident from the figure that overall

the introduction of compressibility has a small but significant effect on the uncontrolled vi-

bration levels. The inlroduction of compressibility correction results in a small decrease

in the vibration levels obtained in the case of the conventional blade configuration (i.e. no

control flap) It is interesting to note that when compressibility effects are accounted for,

the impacl on the uncontrolled vibration levels due to the addition of the trailing edge flap

to the blade is reduced, resulting in very similar vibration levels for the two blade config-

urations.

The effect of compressibility correction on the vibration reduction effectiveness of lhe

actively controlled flap and conventional IBC is presented in Fig. 84. In both cases the in-

troduction of compressibility correction results in a small decrease in effectiveness for

blades relatively soft in torsion, and a small increase for blades relatively stiff in torsion.

Otherwise. there is little impact on the vibration reduction potential of either control ap-

proach.
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The effect of compressibility correction on the maximum input angles required by the

two control approaches is investigated in Fig. 85. Only small changes in the control input

requirements of conventional IBC can be observed. In the case of the actively controlled

flap, there is no significant change in control input requirements other than a small in-

crease (about two degrees) for blades relatively stiff in torsion.

The effect of compressibility correction on the power required to implement the two

control approaches is investigated in Fig. 86. A small decrease in power requirements,

ranging from 16-19%, is observed for both control approaches when compressibility effects

are included. Since the percent decrease is roughly the same for both the actively con-

trolled flap and conventional IBC, the difference in power requirements between the two

control approaches is essentially unchanged from the incompressible case.

When considering Figs. 83 through 86, it should be kept in mind that the introduction of

compressibility is accomplished by scaling the incompressible lift curve slope by the factor

(1//_), which is greater than one. Thus the introduction of compressibility results in an ef-

fective increase in the sensitivity of the aerodynamic loads to changes in both the pitch

angle of the blade and the deflection angle of the trailing edge Nap. However, for an ad-

vance ratio of/_ = 0.3 and a tip Mach number ofMt_ p = 0.65, which has been used in the

present case, it can be determined from Eq. (10.9) that (1/fi) ranges between

1 < 1.44 over the span of the trailing edge flap, and between 1.02 < 1 < 1.87
t°3- T - -T-
over the span of the entire blade. The value of (1//3) does not deviate too far from unity in

the present case (Mti p -_ 0.65 and/_ = 0.3), and thus the introduction of compressibility has

a minor effect on the results. However, if either Mt_p or I_ were increased, then a larger

portion of the blade span would be in the transonic range over a greater portion of each

revolution, and therefore the effects of compressibilily would be more pronounced.
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Chapter Xl

TIME DOMAIN SOLUTION OF THE EQUATIONS OF MOTION

The results presented so far have been obtained using the harmonic balance technique

to extract the trim state and blade response in a completely coupled manner. This tech-

nique is based upon the assumption of a periodic steady state response solution under

fixed-hub steady flight conditions. The periodic assumption allows the transformation of

the system of nonlinear ordinary differential equations in the time domain to a set of non-

linear algebraic equations in the frequency domain. Though this transformation increases

the order of the system by a factor of (I+2NH), there are many packaged subroutines

available which efficiently solve large systems of nonlinear algebraic equations. In addi-

tion, the transformation of the aeroelastic response problem to the frequency domain per-

mits its simultaneous solution with the trim problem, which is generally formulated in the

frequency domain for s',eady flight conditions.

Another approach for generating the trim and aeroelastic response solution involves a

two step procedure; where a simplified aeroelastic response analysis is used first to obtain

the trim state of the rotor, which is subsequently used in the solution of the full aeroelastic

response problem in the time domain using quasilinearization. This method requires the

linearization of the blade equations about a k-th iteration, which when written out in first

order form read[3,50]

-Yk+l = [Ak(_)] Yk+l +f'k(_') (11.1)

where the vector of states is defined as

f_T= _qb _T}T

The matrix [Ak] and the vector fk for the k-th iteration are defined as

(112)
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[0] [i] ][Ak] =
- [Mk] -1 [Kk] -- [Mk] -1 [Ck]

- [Mk] -1 ([M]qb + [C]qb + [K]qb --fb)k

where the subscript k indicates the term is evaluated at the k-th iteration.

expressions

In the above

[M] = 2fb/_qb (1 1.3)

[c] = _f-_/_ (11.4)

[K] : _fb/Eq_ (11.5)

Quasilinearization generates the nonlinear solution iteratively through successive lin-

ear approximations of the system. Each stage otthe procedure begins by linearizing the

system about some periodic solutionyk. The transition matrix [(bk(2;_)] at the end of one

period is obtained from the homogeneous linearized system and the solution y_(2__) corre-

sponding to a zero initial state is obtained from the nonhomogeneous linearized system.

These are then used in the following result from linear periodic system theory[3,50]

yk(O) = ([I] -- [(|)k(2/:)]) -1 Yk(2_)

to obtain the initial conditions corresponding to the converged steady state periodic re-

sponse of the forced linearized system. Generating the periodic response with this initial

condition gives the periodic solution for the next iteration. The procedure is continued until

no change is observed in the periodic solution between two successive iterations.

Solving the response problem directly in the time domain has the advantage that the

order of the system is only doubled, thus requiring much less memory than the harmonic

balance technique. However, the quasilinearization procedure has the disadvantage of

being computationallyintensive. Considerable effort must be expendeddun,_g each stage
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of the iteration to linearize the system about the current solution and to obtain the transi-

tion matrix at the end of one period. Evaluation of the transition matrix requires the sol-

ution of the homogeneous linearized system either n times (where n is the order of the

problem ) as in the n-pass method, or the solution of an equivalent n 2 order system a single

time as in the single pass method[-50]. Furthermore, there are two convergence loops

associated with quasilinearization: one associated with each of the linearized systems,

and one associated with the solution of the nonlinear system.

A more straightforward approach to obtaining the nonlinear system response involves

solving the nonlinear ordinary differential equations of motion direclly in the time domain.

This can be accomplished by using a general purpose ordinary differential equation (ODE)

solver capable of handling nonlinear system of equations. This approach retains the low

workspace requirements of quasilinearization but eliminates the need to successively

linearize the system and evaluate the transition matrix, thus saving considerable time and

computational effort. Furthermore, there is onlya single convergence loop.

The only possible drawback to this approach is that it may be necessary to solve the

trim and response problems separately. However, it has been shown in this study that the

simple spring restrained blade model is adequate to obtain the trim state of the rotor.

Comparisons between the trim state obtained using this simple model with that obtained

using the fully elastic blade model showed that the trim solutions differed by less than 5%

(see Figs. 68 and 67). Thus it is assumed in the solution of the equations of motion of the

blade in the time domain that the trim state of the rotor is known beforehand with sufficient

accuracy.
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11.1 GENERAL PURPOSE ODE SOLVER DE/STEP

In this study the nonlinear ordinary differential equations of motion are integrated nu-

merically in time using the general purpose Adams-Bashforth ODE solver DE/STEP[48].

The code as well as the theory behind its development is presented in detail in Ref. 48.

In order to use the ODE solver, the equations of motion must be expressed in first order

formE48]:

= F(y; t) (11.6)

where the functionF can be a nonlinear function of-y and time.

However, the equations of motion of the isolated blade have been formulated as a set

of fully coupled, nonlinear, second order ordinary differential equations:

f'b(qb, qb, qb, qt; t) :

In order to express the blade equations in first order state variable form it is necessary to

first decompose the equations into the form:

f'b : gb(qb, qb, qt;t) + [M(qb'qt;t)]qb : _ (11.7)

where [M] represents the mass matrix defined by Eq. (11.3). In general this matrix has

off-diagonal terms due to the assumption of moderate deflections, which couples the

equations. In this study explicit expressions for gb and [M] were obtained using the

MACSYMA symbolic manipulation program.

Solving Eq (11.7) for the vector of generalized accelerations yields:

q_ = - [M] -1 gb (11.8)

Using the above expression, the system of blade equations can be written in first order

state-variable form:
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[ ] I }J= [Ol Ill y+
[o] [o] - [M] - gb

(11.9)

where LI] represents an (NDo F_: NDOF) identity matrix. The above first order system is

nonlinear through the [M] -lgbterm. Itshould be emphasized that the matrix inverse re-

presented by [M] -1 is performed numerically in lhe FORTRAN program.

11.1,1 Numerical Integration Error Control

The ODE solver DE/STEP attempts at each internal step to control each component of

the local error vector so that

lelocal(i)l < RELERR × ty(i)t + ABSERR

where RELERR and ABSERR are the relative and absolute error bounds, respectively,

specified by the user This is a mixed relative-absolute error criterion thai includes, as

special cases, pure absolute error (RELERR =0) and pure relative error (ABSERR =0). The

code does not attempt to control the global error directly, so it is not necessarily Irue that

le,j_o_:_a_(i)l _ RELERR > ly(i)l 4 ABSERR

at the end o[the integration For mosl practical problems this inequality is approximately

true and RELERR and ABSERR are chosen accordingly.

In choosing an error criterion, Ref 48 suggests the following rules of thumb: "If the

solulion changes a great deal in magnilude during the integralion, and you wish to see this

change, use relative error. But use caution, since pure relative error is not defined when

the solution vanishes, lithe solution does not vary much, or if you are not interested in it

when it is small, use absolute error. A mixed criterion is probably best and safest choice."

In this study a mixed crilerion is used in which the absolule error is set equal to the

relative error (i.e.. ABSERR-RELERR).
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11.1.2 Workspace Requirements

The workspace requirements are defined as the length of the WORK array required by

the solution subroutines to store all the information necessary to obtain the solution. The

workspace requirements of DE/STEP are approximately 100+21"N. where N = 2ND© F is the

number of equations. This is considerably smaller than theworkspacerequirementsofthe

IMSL subroutine DNEQNF, which are roughly 3"N**2+15*N where N = NDOF(1 + 2N H) is the

number of equations. When seven rotating mode shapes are used to represent the blade

flexibility (i.e, NDOF = 7), the workspace requirements of DE/STEP are approximately 394.

The workspace requirements of DNEQNF in this case are at least 19,000 (for N H=5). Thus

the memory requirements of DE/STEP are less than 2% of those of DNEQNF.

11.2 VALIDATION OF THE TIME DOMAIN SOLUTION PROCEDURE

In order to validate the numerical integration procedure (DE/STEP) used in this study,

the converged steady state solution obtained by numerically integrating the equations of

motion is compared with the results obtained using the harmonic balance technique.

Comparisons are made using the flexible blade configuration presented in Table 8, which

represents a soft-in-plane rotor blade with uniform mass and stiffness.

As a first check of the ODE solver, the steady state trim and response solution obtained

using the harmonic balance technique is used as input for the numerical integration pro-

cedure. Assuming the state space equations represented by Eq. (11.9) have been formu-

lated correctly, the integrated response solution should compare very favorably with the

harmonic balance result. Any differences displayed in the response results can be attri-

buted to numerical integration error. Thus comparisons of the integrated response sol-

ution obtained using steady state initial conditions with the periodic response solution

obtained using the harmonic balance technique should reveal the magnitude of the inte-

gration errors. Knowledge of the level of accuracy achieved by the numerical integration

procedure is essential to properly select the magnitude of the error tolerance required by

DE/STEP.
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TABLE 8

Elastic blade data used in time domain integration

Dimensional Data

R = 4.91m

_-_ = 425RPM

M b = 53kg

Nondimensional Data

Flight Data

/_ =0.3
Rotor Data

ND=4

c b = 2b = 0.05498 L b -- 1.0

X A = 0.0 Xlb = O0
IMB 2 : 0.0000 e : 0.0

IMB 3 ---- 0.0004 /)pt ---- 0.0
_-'JF ---- 1.123, 3.41, 7.62 a o = 2_

_'#L = 0.732, 4.46 Cdo ---- 001

(#T = 3.00, 8.55 Crn o : 0.0
7 : 55 a : 0.07

Helicopter Data

C w : 0.005 tCdf: 001A R
XFA = 00 ZFA = 0.3

XFc : 0,0 ZFC : 0.3

The deviation of the integrated response solution from the steady state solution was

examined for three error tolerances: RELERR=ABSERR= 10 -3 . 10 4 and 10 -5 . The de-

viations in the tip displacements at the end of one revolution from their appropriate steady

state values are shown in Fig. 87 for all three error tolerances. The deviations in the tip

velocities are shown in Fig. 88. As expected the smallest deviations were obtained when

using the smallest error tolerance 10 -5 . Figures 87 and 88 reveal that the tip velocities

deviate more significantly than the displacements from the appropriate steady state values.

The magnitude of the deviation of the displacements was less than 1% for all three error

tolerances. But only at the smallest error tolerance (10 -5 ) was the deviations in all three

velocities under 1%. Itshould be noted, however, that the flap and lead-lag velocities are

smaller in magnitude than the lip displacements, and thus exhibit higher relative error.

This could be avoided using pure relative error (i.e., ABSERR=0), but this would create

problems if any of the state variables approached zero.
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The number of integration steps and corresponding integration limes per revolution

required by DE/STEP to achieve a given error tolerance was also examined. The number

of integration steps per revolution is presented in Fig. 89 for all three error tolerances

considered. The corresponding integration times (CPU seconds) per revolution are shown

in Fig. 90. These execution times are for an IBM Esg000 model 900 mainframe computer.

As expected significantly more integration steps and longer integration limes are required

to obtain higher levels of numerical accuracy. It is interesting to note from Figs. 87 and 90

that a significant increase in numerical accuracy can be achieved by decreasing the error

tolerance from 10-3 to 10 -4 without incurring a substantial increase in integration time.

However, decreasing the error tolerance further to 10 -5 results in a relatively minor in-

crease in numerical accuracy but a relatively large increase (by about 45%) in integration

time.

Based on the comparison studies conducted, which are described above, the error tol-

erance ABSERR--RELERR= 10-4 was selected as a good compromise between numerical

accuracy and integration time. Unless stated otherwise, this error tolerance is used

throughout the rest of this study dealing with the numerical integration of the equations of

motion. The level of numerical accuracy achieved using this error tolerance is considered

to be acceptable; the tip displacements at the end of each revolution deviate from their

steady state values by less than 025%, and the tip velocities deviate by less than 3%. A

3% deviation in the lead-lag velocity is considered acceptable due to the relatively small

magnitude of this velocity component. The small increase in accuracy which could be

achieved using the error tolerance 10 -5 does not justify the substantial increase in required

integration time.

The integrated response solution obtained using steady slale initial conditions and an

error tolerance of 10 -4 is compared in Fig. 91 with the harmonic balance response solution.

The figure shows that lhe response solutions are essentially identical, thus validating both

the numerical integration procedure DE/STEP and the state-space form of the equalions

represented by Eq. (11.9).
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As mentionedpreviously,the ODEsolverDE/STEPdoes not attemptto controlthe

globalerrordirectly,butonlyplacesconstraintsonthelocalerrorduringeachintegration

step. Todemonstratethattheglobalerroris bounded,andalsotoverifythattheperiodic

responsein Fig.91truly representstheconvergedsolution,thedeviationin the tip dis-

placementsandvelocitiesat theendof eachrevolutionarepresentedin Figs.92and93,

respectively,forthefirsttenrotor revolutions.It is evidentfromthesetwofiguresthatthe

errorsin thedisplacementsandvelocitiesremainboundedduringthetenrevolutions;the

tip displacementsat theendof eachrevolutiondifferfromthesteadystatevaluesby less

than0.5%,andthetip velocitiesdifferbynotmuchmorethan3%. Thereforethe steady

state responsesolutionobtainedusingthe harmonicbalancetechniquetruly represents

theconvergedperiodicsolution.

11.2,1 Convergence to a Steady State Condition

It was demonstrated in the previous section that the numerical integration procedure

reproduces the steady state solution indefinitely when steady state conditions are used as

input. The convergence of the numerical integration procedure tothe appropriate steady

state solution is investigated by starting the integration procedure at conditions which differ

greatly from steady state conditions. This will also reflect upon the robustness of the in-

tegration procedure as far as numerical stability is concerned.

Implicit in the application of the harmonic balance technique is the assumption of a

globally stable system. Although the stability of the system is investigated for small per-

turbations about the steady state condition, the stability of the system in the presence of

large disturbances is not addressed. This may lead to doubts concerning whether the

system will indeed approach a steady state condition without passing through an unstable

region. Therefore in this section the equations of motion are integrated numerically in time

using a zero initial condition vector to verify convergence to a steady state periodic sol-

ution when the initialcondilions are far from the steady state values. This will also provide
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a checkon theconvergenceof thenumericalintegrationprocedureto a steadystatesol-

ution.

WhenusinganumericalintegrationschemesuchasDE/STEPtoobtainthesteadystale

responsesolutionit is necessaryto definethe convergencecriteria usedto determine

whena steadystatesolutionhasbeenreached.Sinceaperiodicsolutionisbeingsought,

the bladeresponsecanbeassumedto haveconvergedwhenthe nochangeis observed

in theresponseovertwosuccessiverevolutions.Recognizingthe factthatthe bladere-

sponseduringagivenrevolutionis determinedcompletelybythevalueofthestatevector

at thebeginningoftherevolution,thesolutioncanbeconsideredto haveconvergedwhen

thestatevectorat theendof therevolutionmatchesits valueat thebeginningof therev-

olution.Sincethiswill neverbetrueexactlydueto numericalintegrationerrors(seeFigs.

92and93),it is necessaryto detineacceptablelevelsofvariationin thestatevectorofthe

convergedsolutionfromonerevolutionto thenext. It is not necessaryto examineeach

elementofthestatevector(whichcontainsatotalofsevengeneralizeddisplacementsand

sevengeneralizedvelocities),butonlythetip displacementsandtipvelocities.

In this studythe responseis assumedto haveconvergedto a steadystatesolution

whenthe maximumdeviationin thetip displacementsfromonerevolutionto the next is

no greater than 1%, and the maximum deviation observed in the tip velocities is no greater

than 5% . These tolerances were established based on consideration of Figs. 92 and 93 for

the error tolerance 10 -4. .

The tip response solution obtained by integrating from a zero initial state vector is

compared in Fig. 94 wilh the steady state response solution for the first two rotor revo-

lutions. The figure shows that the flap and torsional responses quickly approach their

steady state solutions, deviating only slightly by the end of the second revolution. How-

ever. the lead-lag responses differ considerably during the two revolulions; this is a well

known behavior which is a result of the low levels of damping associated with this degree

of freedom.

To examine more closely the rate of convergence of the integrated response solution

to steady state conditions, the flap, lead-lag and torsional tip delflections at the end of each
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rotorperiodareplottedin Fig.95forlhe firstthirtyrevolutions.Thelip deflectionscanbe

seento oscillateabouttheir steadystatevalueswithdecayingamplitudes.Theseoscil-

lationsaredueto thepresenceoftransientbladedynamicswithfrequencieswhicharenot

integermultiplesoflhe rotorfrequency_'LTherateal whichthesetransientsdieoutde-

pendson their frequencyand damping.Theflapandtorsionalmodesareveryhighly

dampedwithfrequenciesgreaterthantherotorfrequency,. Thustheflapandtorsional

responsesconvergefairlyquickly(inaboutsixrevolutions)to their sleadystatesolutions,

as shownin Fig.95. Thelead-lagmodes,on lhe otherhand,areverylightlydamped.

Furthermore,thefundamentallead-lagmodehasa rotatingfrequencymuchlowerthanthe

the rotorfrequency.Thereforemanyrotor revolutions(aboutthirty)are requiredforthe

lead-lagtransientsto dieout,whichis quiteevidentfromFig.95.

Thenumberof integrationstepsrequiredbyDE/STEPduringeachofthefirsttenrevo-

lutionslo integratefroma zero initial slate is investigated in Fig. 96. The corresponding

integration times (executed on the IBM ES9000 mainframe) are shown in Fig. 97. Though

only an error tolerance of 10-4 has been used to obtain the blade response, required in-

tegration steps and times per revolution are also presented for error tolerances of 10-3 and

10 5 for comparison. The two figures show that many more integration steps and much

longer integration times are required during the first few revolutions, when large changes

in the blade response are occurring. Afler the first two revolutions the number of inle-

gration steps and integration time per revolution quickly approach lhe values associated

with the converged solution, as shown in Figs. 87 and 88. It should be kept in mindthalthe

steady slate solution is periodic with many higher harmonic components. Thus even are-

convergence has occurred, many steps are required per revolution to properly capture its

time varying nature.

Using the convergence criteria defined earlier in this section, the response of the sys-

lem can be considered to have converged to a steady state solution from zero initial con-

ditions in about thirty revolutions. DE/STEP required about 3,300 integration steps'and an

execution lime of 23 CPU seconds (on lhe IBM Esg000 mainframe) for the error tolerance

of 10-4. This is comparable to lhe 21 CPU seconds required by the IMSL subroutine
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DNEQNF when six harmonics are used. It should be noted, however, that while the con-

vergence time of DNEQNF is relatively insensitive to the initial guess used, convergence

of the integration procedure can be greatly accelerated through a more judicious selection

of the initial condition vector.

The convergence to a trimmed rotor condition from a zero initial state is investigated

in Figs. 98 and 99. The average values of the longitudinal and lateral hub shears over the

first thirty revolutions are compared in Fig. 98 with the steady state (trimmed) values ob-

tained using the harmonic balance technique. The average values of the rolling and

pitching moments are likewise compared in Fig. 99. The comparisons reveal that, although

there is significant deviation from a trimmed flight condition during the first few revolutions,

force equilibrium is attained fairly quickly. Moment equilibrium appears to take much

longer, but this is due to the fact that the moments are much smaller in magnitude and thus

more sensitive to numerical errors.

Finally, the convergence of the 4/rev hub shears and moments to steady state values

is investigated in Figs. 100 through 102. The amplitudes of the 4/rev hub loads during the

first thirty revolutions are compared in these figures with the steady state values calculated

using the harmonic balance technique. Examination of Figs. 100 through 102 reveals that

the vibration magnitudes deviate substantially during the first few revolutions, when large

changes in the blade response are taking place. These large deviations can be attributed

to the presence of transient vibrations resulting from the transient blade dynamics. As

these transients die out, the vibration levels eventually converge to the appropriate steady

state values, as shown in Figs. 100 through 102.

11.3 TIME DOMAIN RESPONSE TO CONTROL

The optimal control strategy used in this study is based on a quasistatic frequency do-

main representation of the helicopter response to control. This representation is only

strictly valid when relating the steady state response of the system to a periodic control

input, and thus the resulting control strategy only addresses the reduction of the steady
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statevibrationlevels.Theneedtoaddressthe transient vibralions is commonly eliminated

by the quasistatic assumption, which assumes the system response is immediate with no

time lag or transient dynamics. This is commonly justified by one or more of the following

assumptions: 1) the magnitude of the transient vibrations are small compared to the

steady state levels so they may be neglected; or 2) the transients are sufficiently damped

and of high enough frequency (compared to £)) such that the transient vibrations die out

fairly quickly; or 3) the resulting control strategy will also produce reductions in the tran-

sient vibration levels. Figures 100 through 102 demonstrate that the transient vibrations

are neither small nor do they die out very quickly. In addition, since the transient vibrations

are generally not 4/rev in the fixed frame, it is unreasonable to expect them to respond to

control in the same manner as the 4/rev steady state vibrations.

The validity of the optimal control strategy used in this study to control the steady state

vibration levels, as well as the validity of the quasistatic assumption, is investigated in lhis

section by implementing the control solution obtained in the frequency domain in the time

domain. This is accomplished by numerically integraling the equations of motion in time

from steady state initial conditions while applying the optimal control solution in open-loop

mode starting at _,-((_t)=0. The magnitudes ot the 4/rev hub shears and moments dur-

ing the first thirty revolutions are plotted in Figs. 103 through 105 Except for the yawing

moment component, which shows a slight increase (by about 3%) during lhe first revo-

lution, the figures depict immediate reductions in each of the 4/rev hub load conlponents.

After only two revolutions all vibration components have decreased to levels substantially

below their baseline values. By the third revolution the vibration levels (excluding the

yawing moment) are reduced to less than 20°_, of their baseline values, and to less than

10°,/o by the tenth revolution. The smaller degree ot reduction achieved in lhe4/revyawing

moment is due to its relatively small baseline value

It is evident from Figs. 103 through 105 that the controlled vibration levels do not im-

mediately attain their final values when the control is applied. This is due to the presence

of transient blade dynamics initiated by the change in the control input (from a zero control

input to the optimal control input). This change alters the condition of the blade and thus
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its steady state response. However, this new response cannot be attained instantaneously.

The transient blade dynamics can be considered to "transport" the blade to the new steady

state response. Thus the measured vibration levels will not attain their final values until

all transients have died out. This must be kept in mind when implementing the control

strategy in the closed-loop mode. Sufficient time must be allowed to elapse between

control steps to allow the vibration levels to settle down to their steady state values each

time the control is updated. Otherwise the feed-back controller could cause the system to

become unstable.

Figures 103 through 105 demonstrate that the optimal control solution based on a linear,

quasistatic frequency domain representation of the helicopter response to control produces

substantial reduction in the vibration levels when applied in the open-loop mode in the time

domain. However, these figures show that the system response is not immediate; quite a

few rotor revolutions, around ten in the present case, must transpire before transient ef-

fects can be ignored. The quasistatic assumption may be considered to be valid when

devising control strategies for controlling vibrations experienced in steady level flight, but

an unsteady time domain control approach would be better suited to deal with the transient

vibrations produced by sudden changes in flight condition or gusts.
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Chapter Xll

CONCLUDING REMARKS

This study has developed a rotor aeroelastic analysis capable of modeling the effects

of individual blade control (IBC) in forward flight implemented through an actively con-

trolled partial span trailing edge flap on each blade capable of introducing control for vi-

bration reduction directly in the rotating reference frame. The analysis program also

posseses the capability to implement conventional IBC, in which the pitch angle of each

blade is controlled independently in the rotating frame for vibration reduction.

Two blade models incorporating fully coupled flap-lag-torsional dynamics were utilized

to represent an isolated hingeless rotor blade. In the first stage of this research the fea-

sibility of this new control approach was investigated using a simple offset-hinged spring

restrained blade model blade model with three degrees-of-freedom representing the dy-

namics of the isolated blade. In the second stage, in which the practical aspects of im-

plementation on a real rotor blade were studied, a realistic fully elastic blade model with

seven rotating coupled modes representing blade flexibility was employed. In both cases

the inertial loads were formulated in a straightforward manner using D'Alembert's princi-

ple, and an extention of Greenberg quasisteady aerodynamics which includes the effects

of a flap were used to formulate the aerodynamic loads. Four blades were combined to

represent a four-bladed hingeless rotor configuration in steady level flight. A fully coupled

trim and response analysis was used based upon the harmonic balance technique.

Simultaneous reduction of the vibratory hub shears and moments was achieved by

minimizing a quadratic cost functional consisting of the weighted sum of the squares of the

vibration magnitudes and control input amplitudes. Two linear quasistatic frequency do-

main representations of the helicopter vibratory response to control were considered: a

global model which assumed linearity over the entire range of control; and a local model

based on a linearization of the system about the current control.
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The most imporlant conclusions obtained in this analytical study using the two blade

models are presented below. These conclusions should be considered within the frame-

work of the simplifying assumptions upon which the aeroelastic simulation was based.

Restrained Blade Model

The global and local controllers implemented through an actively controlled flap located

on each blade were employed to produce simultaneous reduction in the vibratory hub

shears. The effectiveness of the actively controlled flap to reduce vibrations and the r:e-

quired control input angles and power expenditures were investigated. Comparisons with

conventional IBC were carried out to determine the relative effectiveness and efficiency of

the two approaches. The investigations were carried out over a range of blade funda-

mental rotating torsional frequencies. The most important conclusions are presented be-

Iow_

(1) Comparisons of the relative vibration reduction effectiveness of control implemented

through the actively controlled parlial span trailing edge flap with conventional IBC re-

vealed that comparable levels of vibration reduction can be achieved by the two control

approaches. Thus the actively controlled flap is a very attractive device because it has no

effect on the airworthiness when compared to conventional IBC.

(2) Comparisons of the maximum input angles and the power requirements needed to

implement bothcontol approaches were conducted. Obviously larger control angles were

required for the actively controlled flap, however these angles were quite practical. The

power required to implement conventional IBC was between 7 to 12 times larger than that

required for the actively controlled flap. Therefore the actively controlled flap is a much

more efficient means for vibration reduction in helicopters than conventional IBC.

(3) The vibration reduction characteristics of both global and local controllers were

considered. While both controllers were effective in producing substantial vibration re-

duction, the local controller provided better vibration reduction in each case.

(4) A detailed examination of the influence of the torsional stiffness of the blade on vi-

bration reduction effectiveness was conducted. It was found that as the torsional stiffness
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of the blade is increased, larger control input angles and more power were required to

achieve roughly the same degree of vibration reduction. The best vibration reduction was

achieved fora fairly flexible blade configuration in torsion. This observation is consistent

with the findings of Ref. 28.

Fully Elastic Blade Model

The local controller was employed to simultaneously reduce the vibratory hub shears

and moments using the actively controlled flap and conventional IBC. Practical issues

concerning the implementation of control through an actively controlled flap on a flexible

blade were considered. These included: (a) the specific spanwise location of the trailing

edge flap; (b) the effect of hinge moment correction: (c) the effects of compressibility, and

(d) the importance of the span and chord length of the trailing edge flap. These investi-

gations were carried out over a range ot blade torsional frequencies. The most imporlant

conclusions obtained in this analytical study are presented below.

(1) Comparing the vibration reduction effectiveness of the actively controlled flap with

conventional IBC revealed that approximately the same degree of vibration reduction can

be achieved using either approach when implemented on the fully elastic blade. Further-

more. comparisons of power requirements demonstraled that the actively controlled flap

required substanlially less power, between 4% and 16% of the power required to imple-

ment conventional IBm Thus the comparisons performed using the flexible blade model

validate the results of the first stage of the feasibility study that the actively controlled flap

is a very attractive device for vibration reduction, both due to its power efficiency and be-

cause it has no effect on the airworthiness when compared to conventional IBC.

(2) The uncontrolled vibration levels obtained using the fully elastic blade model and the

spring restrained blade model were compared. It was found that the increase in the dy-

namic modeling capability available with lhe fully elastic blade model results in a dramatic

increase in the calculated amplitudes of the vibratory hub loads. Comparing the control

studies performed using the two blade models, however, revealed that despite the much

higher vibration levels in the case of the flexible blade model, both control approaches
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were still very effective in reducing the vibrations, without significant increases in the input

amplitudes or power consumption compared to the spring restrained blade model.

(3) A detailed examination of the influence of the blade torsional stiffness on the vi-

bration reduction potential of the actively controlled trailing edge flap was conducted using

both blade models. It was found that as the torsional stiffness of the blade increased, both

blade models exhibited a decrease in the effectiveness of the control flap and an accom-

panying increase in power requirements. However, the decrease in the effectiveness and

increase in power requirements evident in the flexible blade model is much less severe

than that observed using the spring restrained blade model.

(4) The importance of the spanwise location of the control flap was also considered. It

was found that the vibration reduction effectiveness and power requirements of the control

flap are strongly influenced by its spanwise location on the flexible blade. Thus the specific

spanwise location of the actively controlled flap on the blade span is a very important de-

sign consideration. This sensitivity to the spanwise location of the control flap, which re-

sults from the interaction of the fundamental torsional mode and the second flap and

lead-lag bending modes of the blade, is not displayed in the spring restrained blade model.

Thus the flexible blade model provides a much better representation of the dynamics of a

real helicopter blade.

(5) The importance of the aerodynamic hinge moment correction factor and

compressibilily correction in the vibration reduction potential of the actively controlled flap

were investigated using the flexible blade model. It was found that these two parameters

play a small but potentially significant role.

(6) The effect of varying the span and chord length of the trailing edge flap was inves-

tigated. It was found that in most cases changing the size of the control flap had little effect

on its potential to reduce vibrations, but had a substantial impact on the associated power

requirements and control input amplitudes.

Time Domain Solution
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In the final stage of this study, the nonlinear equations of motion of the fully elastic

blade model were integrated directly in time to validate the results obtained in the fre-

quency domain. The most important conclusions are presented below.

(1) Solution of the aeroelastic response problem through direct numerical integration

of the nonlinear equations of motion in the time domain is more efficient in terms of

memory usage than the harmonic balance technique, but is about as computationally in-

tensive, in terms of CPU time.

(2) The optimal control solution obtained from the frequency domain successfully re-

duces the steady state vibration levels when implemented in the time domain.

(3) The quasistatic assumption made in the representation of the steady state response

of the helicopter to periodic control is adequate for controlling steady state vibrations, but

is not valid when attempting to control transient vibrations.
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Figure 1: Schematics of typical articulated, hingelessand bearingless rotors
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Flap-Lag Stability Boundaries in Hover
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Figure 13: Flap-lag stability boundaries in hover for the offset-hinged spring restrained
blade model
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Flap-Lag Response Verification
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Figure 15: Trim results obtained using the offset-hinged spring restrained blade model,
inflow and rotor angle of attack
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Figure 16: Trim results obtained using the offset-hinged spring restrained blade model,
pitch inputs
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Flap-Lag-Torsion Response Verification
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Figure 17: Coupled flap-lag-torsional response solution obtained using the offset-hinged
spring restrained blade model
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Figure 18: Coupled flap-lag-torsion lead-lag damping in forward flight obtained using the
offset-hinged spring restrained blade model
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Figure 19: Trim results obtained using the fully elastic blade model, inflow and rotor an-
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Stability in Forward Flight
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Figure 22: Lead-lag damping in forward flight, soft-in-plane blade
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Figure 23: Flap damping in forward flight, soft-in-plane blade
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Figure 24: Flap and torsional damping in forward flight, soft-in-plane blade
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Figure 25: Lead-lag damping in forward flight, stiff-in-plane blade
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Figure 26: Flap damping in forward flight, stiff-in-plane blade
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Figure 27: Flap and torsional damping in forward flight, stiff-in-plane blade
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Vibratory Hub Loads
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Figure 28: 4/revlongitudinal hub shear and rolling moment, soft-in-plane blade
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Figure 29: 4/revlateral hub shear and pitching moment, soft-in-plane blade
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Figure 30: 4/revvertical hub shear and yawing moment, soft-in-plane blade
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Figure 31: 4/rev longitudinal hub shear and rolling moment, stiff-in-plane blade
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Figure 32: 4/revlateral hub shear and pitching moment stiff-in-plane blade
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Figure 33: 4/rev vertical hub shear and yawing moment, stiff-in-plane blade
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Baseline Value of the Cost Functional
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Figure 34: Baseline value of the quadratic cost functional for the spring restrained blade
model
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Effectiveness of Various Input Frequency Combinations
in Reducing the 4/rev Hub Loads
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Figure 35: Effectiveness of various input frequency combinations in reducing the4/rev
hub loads using a control flap

242



0.91

0.0

Effect of Various Input Frequency Combinations
on the 8/rev Vibration Levels

shears Input Combination:

'[] No Input

[] 5,¢,5/rev

[] 2,3,4,5/rev

[] 2,3,4,5,6//rev

moments

long. lateral vertical rolling pitching yawing

8/rev Hub Loads

Figure 36: Effect of various input frequency combinations on the 8/revhub loads for the
control flap
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Effectiveness of Various Input Frequency Combinations
in Reducing the 4/rev Hub Loads
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Figure 37: Effectiveness of various input frequency combinations in reducing the4/rev
hub loads using conventional IBC
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Local Controller Iteration History

._. conventional IBCcontrol flap

Figure 39: Iteration history of the local controller: cost functional
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Figure 40: Iteration history of the local controller: 4/rev longitudinal shear and rolling
moment
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Local Controller Iteration History
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Controlled Value of the Cost Functional
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Figure 43: Controlled values of the quadratic cost functional for the spring restrained
blade model

250



Baseline Value of the 4/rev Vertical Hub Shear
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Figure 44: Baseline value of the 4/rev vertical hub shear for the spring restrained blademodel
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Controlled Value of the 4/rev Vertical Hub Shear

30-

¢B

2 25-
o

>.

c 20-

o15-
t,n

o
.,..lO-
C

u
t.. 5-

0

2.40 2.80

F'undamenfal

_ conventional IBC

_.°o oo,o°ooo ooo°°o ,o°oo.°oo°oo°.° .... o ,oo.O. ,°o ooo ,,'°'°°'°°°*°°°°°°°*° "

.°,,

I I I I I I I I I I I I I

3.20 3.60 4.00 4.40 4.80

Rotating Torsional Frequency (/rev)

Figure 45: Controlled value of the 4/rev vertical hub shear for the spring restrained blade
model
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Actively Controlled Flap
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Figure 46: Simultaneous reduction of 4/rev hub shears and hub moments using acontrol
flap, torsionally soft blade
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Figure 47: Simultaneous reduction of 4/rev hub shears and moments usingacontrolflap,

torsionally stiff blade
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Figure 49: Simultaneous reduction of 4/rev hub shears and moments using conventional
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Control Power Requirements
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Figure 50: Control power requirements for the offset-hinged spring restrained blade mo-del

257



Control Input Requirements
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Figure 51: Control input for vibration reduction for the spring restrained blade model
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Effect of Xlc on Uncontrolled Vibration Levels

0.40-

0.30-

0.20-

_-0.90-

0
I 0.80-

i,i

0.70-

D

C 0.60-
0

m_

o 0.50-
¢-

i,

.¢...

o

i
-o 0.10-
E
0

_ Xlc = 0.0 J

.... Xlc = Ccs/4 I

-...

Z 0.00- i I j I t t t _ t i I I

2.40 2.80 3.20 3.60 4.00 4.40 4.80

Fundamenfal Rofaling Torsional Frequency (/rev)

Figure 52: Effect of a mass unbalancedlrailing edge flap on the uncontrolled vibration
levels
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Effect of XIc on Controlled Cost Functional
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Figure 53: Effect of a mass unbalanced trailing edge flap °n the c°ntr°lled vibrati°n levels
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Figure 54: Effect of a mass unbalanced trailing edge flap on the control input amplitudes
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Effect of Xlc on Power Requirements
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Figure 55: Effect of a mass unbalanced trailing edge flap on the control power require-
ments
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Baseline Value of the Cost Functional

2.00-

1.80-

_'1.60-
0

I 1.40-
L_

1.20-
r,,f]

o 1.00-
0

E_ 0.80-
a--

'_ O.60-
E
0

Z 0.40-

0.20-

0.00

o••

°•
o•

°°
•°

••

••.•°o••°•°°•

• o•°°°°°°°°•°••o
° °° ••°°,•°•°°°°°•••°°o•°°ooo°°°°°.°°°°••

-- conventional blade t•..-.-7

I I I I I I I I I I I I |

2.40 2.80 3.20 3.60 4.00 4.40 4.80

Fundamental Rotating Torsional Frequency (/rev)

Figure 56: Uncontrolled value of the quadratic cost functional
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Controlled Cost Functional
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Reduction of the 4/rev Hub Shears and Moments
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Figure 58: Simultaneous reduction of the 4/rev hub shears and moments, (;)T1 ----- 2.5/rev
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Reduction of the 4/rev Hub Shears and Moments
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Figure 59: Simultaneous reduction of the 4/rev hub shears and moments, (aT1 = 3/rev
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Figure 60: Simultaneous reduction of the4/rev hub shears and moments, _TI= 35/rev
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Figure 61: Simultaneous reduction of the 4/rev hub shears and moments, _T1 = 4/rev
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Figure 62: Simullaneous reduction of the 4/rev hub shears and momenls, OJT1 _-- 4,5/rev
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Reduction of the 4/rev Hub Shears and Moments
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Control Input Requirements
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Control Power Requirements
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Figure 65: Power Requirements
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Figure 66: Trim results: inflow and rotor angle of attack
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Figure 67: Trim results: pitch inputs
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Figure 70: 4/revlateral hub shear and pitching moment
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Figure 71: 4/rev vertical hub shear and yawing moment
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Baseline Value of the Cost Functional
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Figure 72: Uncontrolled value of the quadratic cost functional
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Figure 73: Minimized valueofthe quadratic cost functional
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Baseline Value of the Cost Functional
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Minimized Value of the Cost Functional
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Control Input Requirements

_s

a_lO-

_1: 8-

=u 6-
@

c_ 4-

E 2-

°°°=
°°1

Cf O. ....'"""

' .ooo*

om

x
o
_E 0-

2.40 2.80 3.20 3.60 4.00 4.40 4.80

Fundamental Rotating Torsional Frequency (/rev)

Figure 81: Effect of hinge moment correction on the control input requirements of the
control flap

288



Control Power Requirements
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Control Power Requirements
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Deviation in Tip Displacements
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Figure 87: Deviation of tip displacements from steady state values at the end of one rotor
revolution, converged solution
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Deviation in Tip Velocities
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vo ution, converged solution
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Figure 89: Number of integration steps per revolution, converged solution
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Numerical Integration Time per Revolution
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Tip Response in Forward Flight
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Deviation in Tip Displacements
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Deviation in Tip Velocities
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Figure 93: Deviation of the tip velocities at the end of each revolution from the steady
state values
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Figure 96: Number of integration steps per revolution when the initial state is far from
periodic conditions
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ditions
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Verification of Trim
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4/rev Hub Loads
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4/rev Hub Loads
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Controlled Vibratory Hub Loads
Open-Loop Control
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Figure 103: Time history of controlled vibration levels: 4/revlongitudinal hub shear and

rolling moment
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Figure 104: Time history of controlled vibration levels: 4/revlateralhub shear and
pitching moment

311



Controlled Vibratory Hub Loads
Open-Loop Control
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Appendix A

MODIFICATION OF THE QUASISTEADY AERODYNAMIC LOADS

The expressions used in this study to approximate the aerodynamic forces and mo-

ments per unit span on a rotor blade with a trailing edge flap are derived in this Appendix.

The aerodynamic loads are based on a modification of Theodorsen's classical unsteady

aerodynamic theory[52] to include the rotary-wing aerodynamic effects of time varying

oncoming flow and variable inflow.

In the derivation of his unsteady aerodynamic theory, Theodorsen[52] includes the ef-

fects of a trailing edge flap with an arbitrary deflection angle. Thus the total lift and mo-

ment per unit span for a wing-aileron combination, together with the hinge moment per unit

span about the flap hinge, are provided in Ref. 52. Theodorsen's theory is not suitable for

rotor blades undergoing coupled flap-lag-torsional motion, and which are usually operating

at constant or lime varying geometric pitch angles[11,14]. Modifications Io Theodorsen's

theory to account for time varying oncoming flow and constant angle of pitch have been

derived by Greenberg[18.]. The adaptation of Greenberg's theory to rotary-wing problems

and the correction for time varying inflow has been first derived in Ref. 15. Unforlunately,

these modifications do not include the effects of a control flap. Thus Theodorsen's clas-

sical theory will serve as the point of departure in the present derivation.

A.1 THEODORSEN UNSTEADY AERODYNAMICS

Theodorsen's classical theory formulates the solution for the two-dimensional force and

moment on a thin airfoil-aileron combination undergoing simple harmonic pitching and

plunging motions in a uniform, steady flow field. The airfoil moves in vertical translation

h(l) and rotates through the angle :_(l) about an axis located a distance _= ba behind the

midpoint of the total chord of the airfoil-aileron combination, and the (aerodynamically un-

balanced) trailing edge flap rotates about an axis at _ = bc through the angle 6(t) relative
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to the airfoil chordline, as shown in Fig. A.I. The plunging motion h(t) is taken as positive

down, and the pitching motions of the airfoil and control flap are positive trailing edge down

(see Fig. A.1).

Theodorsen's classical theory formulates the solution for Laplace's equation

v2q_ = 0

in terms of the disturbance velocity potential _ subject to the two dimensional boundary

condition that the airfoil chordline is a streamline of the flow, and subject to Kutta's hy-

pothesis of finite, continuous velocities and pressures at the trailing edge.

Theodorsen separates the solution of the problem into two pads. First, an appropriate

distribution of sources and sinks is placed just above and below the airfoil chordline such

that the two dimensional boundary condition that the chordline is a streamline of the flow

is satisfied. The disturbance velocity potential due to the sources and sinks represents the

noncirculatory portion of the flow and is used to determine the noncirculatory aerodynamic

loads acting on the airfoil. A pattern of vortices is then superimposed on the chordline,

with counter-vortices along the wake to infinity, such that the Kutta condition at the trailing

edge is satisfied. The disturbance velocity potential due to the pattern of vortices repres-

ents the circulatory portion of the flow and is used to determine the circulatory aerodyna-

mic loads acting on the airfoil. Small disturbances are assumed, resulting in a linear

theory.

A.2 INCLUSION OF ROTARY-WING AERODYNAMIC EFFECTS

Theodorsen's classical theory is modified in this section to include the effects of a time

varying free stream velocity and variable inflow for the purposes of approximating the

aerodynamic forces and moments on a rotor blade. The effect of time varying oncoming

flow is accounted for by retaining all time derivatives of the free stream velocity U(t), which

Theodorsen equates to zero. The effect of a time varying inflow velocity v(t), shown in Fig.

A.1, is included using the principle of superposition, which is valid in the context of a linear
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aerodynamictheory. Theeffectof a constantcomponentof thetotalpitchc_(t) is not ex-

plicitly provided for, since this can be handled by steady-flow theory and the result after-

wards superimposed on the solution.

The modifications to the noncirculatory and circulatory aerodynamic loads are dis-

cussed separately in the following two sections.

A,2.1 Noncirculatory Lift and Moment

From Ref. 52, for the noncirculatory portion of the flow, the lift (positive up), pitching

moment (clockwise positive), and control flap hinge moment (clockwise positive), respec-

tively, for the entire wing-aileron system are obtained by evaluating the following integrals:

LNC = 2pb _ dx (A.1)

/+'MyNC = --2pb 2 (x--c)dx + 2pUb _bdx - b(c-a) LNc
0-- 1

(A2)

L L'MhN C = -2pb l_(x-c)dx + 2pUb _dx (A3)

where x= x/b is the nondimensional distance from the midpoint of the total chord of the

airfoil-control flap combination. Also, a = ba/b and c=bc/b.

The quantity ¢(x,t) in Eqs. (A.1)- (A.3) is the velocity potential at a point x on the airfoil

due to an appropriate distribution of sources and sinks just above and below the airfoil

chord such that the two-dimensional boundary condition that the airfoil boundary is a

streamline of the flow is satisfied. The velocity potentials due to position and velocity of

the individual components of the wing-aileron system which together satisfy this

condition[52] are:

r

_ = U_b\"l - x 2

_h = hb'_'l - x2
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= b2 ½x-a)&-x2

q_ = l_-_U6b[_1 - x2 cos-lc - (x- c)log N]

- (x -- c) 2 log N] (A.4)

where

1_ cx_ %/1-- x2 ,_11-- c 2
N=

X--C

Due to the presence of inflow, the resultant air I]ow sensed at x=ba in the plunging

direction is (11 - _,). The velocity potential due to inflow, which can be obtained by substi-

tuting ( - v) for I_ into the velocity potential _h in Eqs. (A.4), is given by

_v = - _'b%/-11- x2 (A.5)

The total velocity potential which satisfies the two-dimensional boundary condition, in-

cluding the effect of variable inflow, is obtained by summing the individual contributions,

since for a linear problem the superposition principle applies, i.e.

q_ = _ + _h + _v + _)& + _(5 + _ (A.6)

The noncirculatory lift and moments are obtained by substituting Eqs. (A.4)- (A.6) into

Eqs. (A.1)-(A.3)and performing the required integrations. Before doing this however, it

is convenient to interchange the integration and differentiation operations in Eqs.

(A1)-(A.3) , which yields the following equivalent expressions for the uncirculatory lift,

pitching moment, and hinge moment:

d +1

= 2pb _-[r 1J- q_dx] (A.7)LNc

316



d i
_-+1MyNC = -2pb2 j.[.+l¢(x-c)dx] + 2pUb _dx

OT J-1 "-1

-- b(c- a)LNc (A.8)

d fcl _I 1MhN c = -- 2pb-_-[ ¢(x- c)dx] + 2pUb q_dx (A.9)
"C

When Eqs. (A4) - (A.6) are substituted into Eqs. (A.7) - (A.9), various integrals involving

the velocity potentials inEq.(A.6) arise, and must be evaluated. These integrals are eval-

uated in Ref. 52 as follows:

"l¢_dx = -_-bu= _
1 2

_-lq_hd x = __bh_
1 2

l-l{_.dx _-- _ #zb2 _a

1 2

___l¢&dx = --_-U_T 4

,I-1 b 2¢,_dx - ._T 1
1 2

-16o,(x- c)dx = - ---bU=c,_
1 2

'_l_)h(X- c)dx - hc,1:
b

1 2

.[_'-1_5.;,.(x- c)dx = _b2T14 _
1

f _-1¢,_(x- c)dx - UST 8
b

1 2
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l b_(dx = b U_T42

'_(hhdX= b hT42

'f_(dx = &b2T9

fc b U_T5l(h3dx = 2x

L b2l_b3dx = 2_ "_T2

ff(h=((x - c)dx = b UxT12

1_)h(X - c)dx = b hT 12

.Ic14)&(X- c)dx = _b2T13

If b Uc_T2_(x- c)dx = 2_

'c b2 .(_T3 (A. 1O)_3(x- c)dx = 2re

The quanlities denoted by T with a numerical subscript, used in the above and subsequent

expressions, represent constants involving the nondimensional airfoil dimensions a and

c. These constants, which are taken from Ref. 52, are defined at the end of this Appendix.

Additional integrals, not represented in Eqs. (A.IO), arise which involve the velocity po-

tential (;/)v , which accounts for the presence of inflow. These integrals can be evaluated
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by substiluting ( - _.) for h into the integrals in Eq. (A.10) involving the velocity potential _1_

due to the plunging velocity. Making the substitutions yields:

+lS,,d x = _ b
-1 2

f _-1£'_,(x- c)dx = ---b_,'c_
1 2

¢_,(x- c)dx = _,,T1 (A.11)

Using Eqs. (A.6) through (A.11), the following expressions for the noncirculatory lift,

pitching moment and hinge moment are obtained:

2_ __ b ,;._ _ _b 2 _aLNC = 2pb[ l:J:z + U._)_ + h_ - 2- 2

b 2 -.

-- -_-(0___ + U,i)T 4 _-_T1] (A.12)

MyNC --- - 2pb2[- 2_O:_+ U._)c_ b b-- - _-hc_ + y_'c_.

b 2 ..

+ _b2T14 _ - 2_-(U_ + U,__)T8 - _--_TT]

b _b_bh_ b _b 2 _a
+ 2pUb[_-Ux_. + 2 " 2

b 2
2 _T1] - b(c- a)LNc

bU6T

(A.13)

MhN C --_ _ 2pb2[ _ b • b -- b {'T_(U:_ + U_)T 1 - +-_-hT1 _- 1

• b2,,
+ _b2T13 - 2b_u_, + U_')T 2 - _,_. c_T3] (A.14)
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Note that in the above expressions, the time derivatives of the free stream velocity has not

been set to zero, as was done in Ref. 52.

Collecting like terms, Eqs. (A.12)- (A.14) become

= lp(2_)b2[(J:_ + U_ + h - v - &(ba)LNC

• T4 .. T1 (A.15)
- 2((,15 + U3 2)-_ - 2b_-_---]

1 2__...U25MyNC = lp(2_)b2{U2_, - (_-+ a2)b25/ -

+ 2--_-[T8 - T1 + (c - a)t4](2b)U& + 22--_-[T7 + (c- a)Zl]b2_

+ (baXh-v) + U(h-_') + (ba)0_

+ 2--_-[Te + (c - a)T4](2b)U_} (A.16)

MnN C = --pb2[U2_xT4 - (2Tg+T1)bU_ + 2T13b2_

2U252-_- -2b2_2-_- " + T4U(II-_')- bT,IU:x+

- bTl(h- _,.)- 2b2-_-. 05]
(A.17)

In the expression for the noncirculatory pitching moment, the relation

1 lac
T14 = _-+ 2

taken from Eqs. (A.31), has been used to simplify the expression.
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A.2.2 Circulatory Lift and Moment

From Ref. 52 the circulatory lift (positive up), pitching moment (clockwise positive), and

control flap hinge moment, respectively, for the whole wing-aileron systemE521 are

Lc = 2_pUbQC(k) (A.18)

b
My C = 2_.pUbQ[(ba + 2)C(k)- -_-] (A.19)

Mhc = -- pUb2Q[T12C( k)- T4] (A20)

where C(k) is Theodorsen's lift deficiency function[52] which depends on the reduced flut-

ter frequency k= (ob/U.

The parameter Q in Eqs. (A.18)- (A.20) is defined in Ref. 52 as

T1° b Tll
b ba)_ + --_---U& + 2_Q = U_ + I_ + (-_-- (A.21)

This quantity appears in the expression for the total circulation about the wing-aileron

system calculated by enforcing the Kutta condition at the trailing edge. Superimposing the

effect of inflow, the parameter Q becomes

Tl° b Tll
b _ ba)_ + -_--U& + 2toQ = U_ + (h-v)+ (-_- (A.22)

The substitution Eq (A.22) into Eqs. (A.18)-- (A20) yields expressions for the circulatory

lift, pitching moment and hinge moment, respectively, which include the effects of time-

dependent free stream velocity and variable inflow.

A.3 CHANGE OF NOTATION

In modifying Theodorsen's unsteady aerodynamic theory, the original airfoil notation

used in Ref. 52 was adopted for convenience. However, for the rotary-wing application it

is necessary to modify this notation. The relationship between the notation of Ref. 52 and

the notation used in this study is given below:
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b = _(c_ +Ccs)

ba = XA- -_-(c b + 2Ccs)

1 (A.23)
bc = --_-(c b -Ccs)

The second of Eqs. (A.23) implies the assumption that the aerodynamic center of the blade

cross-section is located at a distance of 1/4 of the blade chord from the leading edge•

For rotary-wing applications, the pitch angle :_(t) is frequently[38,45,50,53] interpreted

as the total pitch angle of the blade

= 8G + _ (A.24)

The same interpretation is made in this study.

The modified aerodynamic loads derived in this Appendix are expressed below in terms

of the parameters of this study by using Eqs. (A.23) and (A•24), and substituting them into

Eqs. (A.15)-(A.22). Furthermore, the free stream velocity U is replaced by U T, and the

quantity (v- I_) is replaced by Up, where U T and Up represent, respectively, the the com-

ponents of the total air velocity sensed by the blade approximately parallel and normal to

the hub plane. Finally, the flat plate lift curve slope of 2,_ is replaced by the incompressible

lift curve slope ao and PA is used to denote the air density.

Introducing these substitutions, the final expressions for the noncirculatory and circu-

latory lift, pitching moment and hinge moment used in this study are

LNC = 1PAao(Cb + Ccs)2{OT(SG + (_) + UT(0 o + _)

- [X A - -_(c b + 2Cos)](0 G + _) - 0p

• T4 +.T1
- 2(0T(S Jr UT_ a)--_o- (cb + Ccs)O-_-° }

(A.25)

___ 2r 2MyNC = PAao(Cb-t- Ccs) 'tUT(0G + 4) -- UTUp
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1
+ [xA - -_-(%+ 2Ccs)][0T(eG+ _) _ 0p]

T4, 2_ TI

- 2-_-oUTO_ _2_(%+ Cos)UT,$a o

T8 3 c T4 "
+ [a-_co+ Oct)+(T ° - 2xAa)_](uT6+ uT_)

+ -_.{c b + T7 3 T_ .._c_)[_-_oCo+ Cc_)+ (_-co- 2x_a_-_-_]_}

1 Ccs)2{U2T4(I_G 4- _)+ -2- 13(Cb 4- CCS)2(_)G + (_)MnNC -- 4PA(Cb 4- 1 T

- 2-_2T9 + T1Xc b + Ccs)UT(0 G + _)

1
4- _(C b 4- Ccs)Tl[U P -- UT(/9 G + _)] _ UTUpT4

T2 .
2 Ts 1 Cos)2_T3 (c b 4- Cos a)_-_ UT5 }+ 2UT-a_o _' -- _(C b + ao --

1
LC = _-PAao(Cb + Ccs)UT{UT(0 G + ¢)-- Up

1
+ [_% + 3co_)- XA](bG+ _)

+ 2_o0 UT6 + 4-_(2Cb + 3Ccs Ta)_ol &}C(k)

1
Uyc = _-PAao(Cb + Ccs)UT{UT(/_G + _) Up

Jr-[ 2_(Cb 4-3Ccs ) -- XA](L_G 4-_)4-2-_-o0 UTC_

 Cc,,O k - _-(% + C_s)]

(A.26)

(A.27)

(A.28)

(A.29)
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Mhc-- 1pA(CbJr Ccs)2UT{UT(_G Jr _) -- Up
4

+ [_-(Cb + 3Ccs) -- XA]({) G Jr _))

+2T'° + 2CbJr3Cc, T,l
ao

(A.30)

A.4 DEFINITION OF COEFFICIENTS USED BY THEODORSEN

The various parameters denoted by T with a numerical subscript appearing in the ex-

pressions for the aerodynamic loads represent constants which arise in the integration of

the velocity potentials along the airfoil chord. These constants are defined by

Theodorsen[52] as follows:

1 "v_ - c 2 (2 + c2)+ c cos-lc
T1- 3

T2 = T 6 -= c(1- c2)-'_F1-c2(1+c 2) COs-lc+ c(cos-lc) 2

T3 _ (1 + c2)(cos-lc) 2 + lc_/11 - c2 cos-lc(7 + 2c 2)= 4

1 (1 - c2X5c 2 4- 4)
8

T 4 = - cos-lc + c\_11 - c 2

T 5 = -(1-c 2)-(cos-lc) 2+2c_$1-c 2 cos -lc

r

T7 _ (1 + C2) cos-lc + lc,J1 _ C2 (7 + 2C2)= 8

T8 = _ 1\'1 - c 2 (2c 2 + 1)+ c cos-lc
3

f

1 1 / C2
T9 = -_-[-_\ 1 - )3 + aT4]
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TlO= _ - c2 + cos-lc

Tll = cos-lc(1-2c)+x_11-c 2(2-c)

T12 = %/1 - c 2 (2 + c)- cos-Ic(2c + 1)

1
T13 = _-[- T 7- (c- a)T1]

T14 = -_6 + l a-_- c (A.31)

where a and c are the nondimensional airfoil parameters used by Theodorsen which have

already been defined. From Eqs. (A.23) these can be defined in terms of the airfoil char-

acteristics used Jn this study:

C --

a -

bc cb - Cos

b c b 4- Ccs

ba _ 2XA Cb + 2Ccs

b (c b +Ccs ) 2(Cb +Ccs)
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U o

b

) oc(t) h(t)

_X

be

(a)

U(t) v(t)

= - b _I

h(t)

I_' bc _1

(b)

=-X

Figure A.I (a) Airfoil-aileron combination undergoing plunging and pitching motions in a

uniform stream. (b) Airfoil-flap combination with time varying free stream and inflow.
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Appendix B

EXPLICIT FORMULATION USING A SYMBOLIC MANIPULATION PROGRAM

The main obstacle encountered in the explicit formulation of the equations of of motion

is the rapid proliferation of the number of terms in the explicit expressions as each suc-

ceeding mathematical operation required in the derivation is performed. Keeping track of

each of these terms can be tedious and time-consuming, even when an ordering scheme,

which necessarily accompanies explicit formulations, is employed to neglect the higher

order terms. Fortunately, substantial increases in computer power during the last decade,

as represented by high computational speeds and the availability of large core memory

at low cost, have enabled the relegation of the tedious algebraic tasks to the computer.

Many symbolic manipulation programs exist which can be used to derive the equations of

motion of the blade in explicit form. These equations can then be converted into FORTRAN

code for inclusion inloa computer analysis code. Since the algebraic tasks are relegated

to a computer, it is fairly easy to retain as many terms as desired. In addition, the

equations can easily be rederived by the computer to reflect any changes in lhe aeroelastic

model.

Symbolic manipulalion programs enlist an arsenal of functions and subroutines which,

when invoked by the appropriate command, perform specific mathematical operations on

indicated symbolic expressions to yield the desired result. The user generally has the

option of entering the commands interactively or in a batch format. For lengthy derivations

it is preferable to save the specific sequence of commands into a file and execute them in

batch format. This facilitates the review of the specific sequence of commands for cor-

rectness bolh before and after execution and allows the user to make minor changes in the

derivation, if desired.
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B.1 ORDERINGSCHEME

Explicitformulationsrequirethe employmentof an orderingschemeto neglectthe

higherorderterms,evenwhenthetediousalgebraictasksare relegatedto a computer.

Unlessa systematicapproachis employedneglecthigherorderterms,the lengthof the

expressionscanbecometoolarge,requiringvastamountsof computertimeandmemory

to performthe requiredsymbolicmanipulations,and may ultimatelyleadto a system

crash,if all availablememoryis exhausted.Thustheorderingschemeisconvenientfor

reducingthesizeoftheexpressions.Byjudiciouslyassigningappropriateordersof mag-

nitudeto thevarioustermsencounteredin theexpressions,all termswhichcanbecon-

siderednegligibleareeliminated,thussavingvaluablecomputertimeandmemory.

Theorderingschemeusedin this studyis describedin Chapter 2. The basis of the

ordering scheme is a small dimensionless parameter _ which represents typical blade

slopes due to elastic deformation. It is known for helicopter blades that _ is in the range

0.1<_<O.2 . The ordering scheme used in this study is based on the assumption that

terms of the order of O(s2) are neglected in comparison with unity.

Orders of magnitude can only be assigned to nondimensional quantities. The dimen-

sional parameters R, M D and ,Q , which denote the rotor radius, blade mass, and rotor

speed, respectively, are used to express all dimensional parameters appearing in the

equations in nondimensional form. Orders of magnitude can then assigned by selecting,

based on experience, a typical value for the particular parameter under consideration.

Caution must be exercised when implementing an ordering scheme so as to avoid ne-

glecting potentially important terms. This is best accomplished by careful insight into the

problem when establishing a cut-off level for the ordering scheme at each stage of the

derivation. Here the cut-off level designates the order of magnitude at which all terms of

higher order are neglected. Until the final stages of the derivation, the primary motivating

factor in establishing the cut-off level is the desire to keep the expressions to a manage-

able size while retaining as many terms as is practical: it is only in the final stages that the

ordering scheme should be strictly enforced. If the ordering scheme is strictly enforced

throughout the entire derivation then important terms may be erroneously neglected. This
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is dueto thefact thatthe relativeordersof magnitudeof thevarioustermscanchange

whencertain mathematicaloperations,suchas integrationor differentiation,are per-

formed,resultingin the lossof importanttermsat criticalstagesof thederivationif the

orderingschemeis enforcedtoostrictly. Thereforeit is importantto relaxthe implemen-

tationof theorderingschemeuntilthefinalstagesof thethederivation.

B.2 SYMBOLICMANIPULATIONMETHODOLOGY

The major steps in the formulation of a set of explicit equations of motion using a

symbolic manipulation program are listed briefly below. These steps are expanded upon

later for the particular symbolic manipulation program MACSYMA, which has been used

extensively in this study.

(1) Definitions: All functional dependences and orders of magnitude of the various pa-

rameters must be defined. In addition, all user defined functions and expressions which

would be convenient to have at hand must be defined. Finally the starting cut-off level for

the ordering scheme is established

(2) Algebraic manipulations and mathematical operations: Predefined quantities and

expressions are combined and manipulated using the appropriate commands and user

defined functions to develop the desired result.

(3) Expansion and conversion to FORTRAN code: The explicit expressions are ex-

panded into a sum of product terms involving the various parameters of the problem. At

this stage the ordering scheme is strictly enforced. The expressions are then converted

to FORTRAN code in preparation for incorporation into the analysis code.
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B.3 SYMBOLIC MANIPULATION USING MACSYMA

The general-purpose computer algebra system MACSYMA is used throughout this

study to develop explicit expressions for the equations of motion of an isolated rotor blade.

The program MACSYMA (version 420) is installed on a Symbolics 3650 dedicated LISP

machine running Genera 7.0. The Symbolics machine is networked via EthernettoaSun

3/280 computer on which all of the numerical computations are performed.

A detailed description of the syntax and usage of the various MACSYMA commands

used to develop the explicit equations of motion are beyond the scope of this study, and

can be found inRef. 59. However, a brief description of the usage °f the vari°us MACSYMA

commands used are given when appropriate. In this study, the sequence of MACSYMA

commands used to derive the expressions are saved in a file and executed in batch format.

Batch files are executed using the MACSYMA command BATCH("filename.mac") where fi-

lenamemac represents the name of the batch file containing the MACSYMA commands.

All MACSYMA commands will be written in BOLD capitals, and the arguments will be

written in lower case italic.

The basic steps required in the formulation of explicit equations using symbolic ma-

nipulation are discussed below.

B.3.1 Definitions

Before proceeding with the derivation of the equation of motion, the following definitions

must be made:

{1) All functional dependencies of the various parameters used in the study must be

defined using the DEPENDS(funlist, varlist) command, where the variables in funlist are

declared to depend onvarlist. If the functional dependence of a variable is not established

beforehand, then derivatives of the variable using the DIFF(exp, v, n) command, which

evaluates the derivative of exp with respect to v n times, will be equated to zero.

(2) All orders of magnitude of the parameters used in the study must be defined using

the RATWEIGHT(var, w) command, which assigns aweight ofwtovar. The value ofw re-
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presentsthevalueof theexponentof_forthegivenparameteraccordingto theordering
scheme.

(3)All userdefinedfunctionsmustbedefinedusingthe:= operator,i.e.

FunctionName(args) := body;

The user defined function used in this study is the CROSS(u, v) command which crosses

the vector u with the vector v. The CROSS(u, v) command is created as follows

CROSS(U,V): = MATRIX(I-UI-2].V[3]- U[3].V[-2]],

[U[3].V[1]- U[1].V[3]],

[U[1].V[2]- U[2].V[1]]);

(4) All transformation matrices between the various coordinate systems must be de-

fined. These are defined using the MATRIX(rowl ..... rowN) command, which defines a rec-

tangular matrix with the indicated rows. Since the transformation matrices represent

orthonormal transformations, the inverse transformations can be obtained using the

TRANSPOSE(matrix) command.

It is important to note that vectors are defined using the MATRIX(rowl ..... rowN) com-

mand by defining each row as having only one element.

(5) Any quantities and expressions which would be convenient to have al hand should

be defined.

(6) Finally an initial cut-off level to the ordering scheme must be established using the

RATWTLVL:value command. This causes a product term to be set equal to zero if ils

weight exceeds value.

B.3.2 Algebraic Manipulations and Mathematical Operations

Once all of the functional dependencies, orders of magnitude, user defined functions,

and convenient quantities and expressions have been defined, the expressions may be

manipulated using the various MACSYMA commands and operations available to the user.

The most important of lhese are listed below.
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Additionandsubtractionareaccomplishedusingthe + and- signs,respectively,and

scalarmultiplicationanddivisionareaccomplishedusingthe*andI symbols, respectively.

Matrix multiplication and vector inner products are performed by placing a period between

the two terms.

Substitutions are performed using either the SUBST(a, b, c) command or the RAT-

SUBST(a, b, c) command, where a is substituted for all occurrences of b in expression c.

The main difference between the two commands is that the RATSUBST(a, b, c) command

invokes the ordering scheme while the SUBST(a, b, c) command performs a purely syn-

tactic substitution.

The function RATCOEF(exp, var, n) can be used to obtain the coefficient of the ex-

pression var**n in the expression exp. This command is useful when it is desired to de-

termine whether there are any occurrences of exp**n in a given expression. If there are

no occurrences then the command returns a result of zero.

A given expression can be rationally expaSded and simplified using the

RATEXPAND(exp) command. This command, and also the RATSUBST(a, b, c) and the

RATCOEF(exp, var, n) command, invoke the ordering scheme whereby all product terms

in the expression whose net weight is higher than the value set by the RAI"WTLVL:value

command are set to zero.

B.3.3 Expansion and Conversion to FORTRAN Code

Once the explicit expressions have been derived they must be put into their final form and

then converted to FORTRAN expressions. The steps for doing this are listed below.

(1) First the final level of the ordering scheme must be established using the

RATWTLVL:value command.

(2) Next the expressions are rationally expanded and simplified using the

RATEXPAND(exp) command. This command also invokes the ordering scheme by neg-

lecting all higher order terms according to the level established by the RATWTLVL:value

command.
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(3)Next all variable names which are not legal FORTRAN variable names are replaced

syntactically with legal ones using the SUBST(a, b, c) command.

(4) The expressions are then converted into FORTRAN assignment statements using the

FORTRAN(exp) command.

(5) Finally, the expressions are saved into a file using the WRITEFILE('filenarne.for")

command.

The FORTRAN expressions are then transferred to the Sun 3/280 via Ethernet and in-

corporated into the FORTRAN computer code.
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Appendix C

EXPLICIT EXPRESSIONS FOR THE ROOT LOADS ACTING ON THE OFFSET-HINGED
SPRING RESTRAINED BLADE MODEL

Explicit expressions for the force and moment at the blade root are developed in this

appendix for the offset-hinged spring restrained blade model. In addition, an explicit ex-

pression for the total moment about the control surface hinge, required to calculate the

power required to drive the control surface to implement control, is also derived.

General explicit expressions for the distributed loads acting on the blade and control

surface have been developed in Chapter 3 in terms of the three displacement quantities

u, v and w and the rotational quantity q_. Explicit expressions for the distributed loads

acting on the blade and control surface for the offset-hinged spring restrained blade model

are obtained by substituting Eqs.(4.3) and (4.4) into these general expressions. Once this

has been done the loads at the blade root are obtained by integrating the distributed loads

along the span of the blade and control surface. The substitutions and integrations are

performed symbolically using the symbolic manipulation program MACSYMA, as described

in Appendix B.

Before performing the integrations along the span it is convenient to decompose the

total geometric pitch angle into an x-dependent component and a time dependent compo-

nent as follows:

0G = Opt(x) + 8pc(t)

Basic trigonometric relations allow us to write:

cos(0 G + _) = cos Opt cos(0pc + _) - sin Opt sin(0pc + _)

sin(0 G + _) = sin Optcos(0pc + _) + cos Opt sin(Opc + _)

cos(0 G + q_+ 5) = cos Opt cos(0pc + _ + 3) - sin Opt sin(0pc + _ + 5)

(C.la)

(C.lb)

(C.lc)
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sin(0G + q_ + 6) = sin Opt cos(0pc + _ 4- 5) 4- cos Opt sin(Spc + _ 4- 6) (C.ld)

These expansions are used in the integration of the distributed loads along the span of the

blade and the conlrol flap.

C.1 INERTIAL ROOT LOADS

The inertial loads at the blade root are obtained by integrating the distributed inertial

loads developed in Chapter 3 along the span of the blade once they have been expressed

entirely in terms of the blade degrees of freedom. The inertial root loads are formulated

in the "2" system, in which the distributed inertial loads have been developed.

C.1.1 Blade Inertial Loads

For the offset-hinged spring restrained blade model the differential force at the blade

root due to the inertial loads acting on the blade is given by

dF'lb = Plb dx

where Ptb represents the distributed inertial force acting on the blade, which can be ex-

pressed in the "2" system as

A A A

Plb ---- Plbx2 ex2 4- Plby2 ey2 Jr- Plbz2 ez2

The x2, Y2 and z 2 components of Plb for the spring restrained blade model are obtained

from the expressions developed in Chapter 3 by substituting Eqs. (4.3) and (4.4) into Eqs.

(3.20).

The total force at the blade root is obtained by integrating the differential force along

the span of the blade

L Lb
Fib -= Pad dx

which can be expressed in the "2" system as

(c.2)
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where

A A A

Fib = Flbx2 ex2 + Flby2 ey2 + Flbz2 ez2

_0 Lb
Flbx2 : Plbx2 dx

= Mb92(Xb + e) + 2Mbxb_ + MbXI_p(_ -- _2)

+ MbXD[(_( + ¢2 +, _# + _2) _ __q2((2 +/_2)]

_ 2Mb[Y b sin(ep c + (_) + z b coS(epc + (_)]_(_pc + _))

yOLbFlby 2 = Plby2 dx

= 2Mbxb_-P/_p+ Mbxb(__2 --_)+ 2Mbxb_C_+ /_)

+ Mb[Y b coS(ep c + _) _ Zb sin(Sp c + _)][E_(Q + 2_)

+ ({)pc + _))2 + 2D.(Spc + _)X/_ +/_p)]

+ Mb[Y b sin(gpc + _) + Zb COS(OPC + q_)][(Opc + _))

+ 2_ -- 2_(_)pc + _]

_0 Lb
Flbz2 = Plbz2 dx

= Mo×.(;_+ _ + #_+ _)#.- Mox_

+ Mb[Yb COS({)pc + q_) -- Zb sin(Opc + q_)][_(/_ + Pp)

+ 2#_+ _ - (_)p_+ _)]

(C.3a)

(C.3b)
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+ MbrYb sin(epc + q_)+ Zb c°S(Spc + _)'J[(_)pc + _)2

- (/ pc+ + (c.3c)

In the above integrations over the blade span the following integrals involving products of

x-dependent quantities have been substituted directly into the expressions:

f0 Lbmb = Mb (C.4a)
dx

Lbmb X = Mbx b (C.4b)
dx

'0LbmbXlb COS 8pt = MbY b (C.4c)dx

f0 Lbmbxlb 8Pt = MbZb (C.4d)
sin dx

where M b is the total mass of one rotor blade and the triad (Xb, Yb, Zb) represent the coor-

dinates of the blade center of mass from the blade root.

For the offset-hinged spring restrained blade model the differential moment about the

blade root due to the inertial loads acting on the blade can be expressed as

d_llb = (qlb + X ex4 x 'Plb)dX

where qlb represents the distributed inertial moment acting on the spring restrained blade,

which can be expressed in the "2" system as

A A ,'k

q_b = qlbx2 ex2 + qlby2 ey2 + qlbz2 ez2

The x2, Y2 and z2 components of qlb for the spring restrained blade are obtained from the

general expressions developed in Chapter 3 by substituting Eqs. (4.3) and (4.4) into Eqs.

(3.23).

The total moment about the blade root is obtained by integrating the differential root

moment along the span of the blade
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MIb = JO (qlb + Xex4 x Plb) dx
(c.5)

which can be expressed in the "2" system as

A A A

Mib = Mlbx2 ex2 + Miby2 ey2 + Mlbz2 ez2

where

-b bx dx - (,/_ 4- _p) x Plby2 dxMlbx2 = qlbx2 dx + _ Plbz2
(C.6a)

r.[_-b LbX dx 4- (/_ 4- _p) x Ptbx2 dxMlby2 = qlby2 dx - Plbz2
"o

(C.6b)

-b bx dx - _" x Ptbx2 dx (C.6c)Mlbz2 = qlbz2 dx 4- Plby2

Before performing the above integrations it is convenient to define the following inte-

grals:

'_-b x 2 dx = Ib (C.Ta)m b

"ol, (C.7b)m b x Xlb COS _pt dx = ly b

.[o'bm b x Xlb sin 8pt dx = Izb

(C.7c)

fOb(IMB 2 4- IMB3) dx = Jb
(C.7d)

-b(IMa2 -- IMB3) COS 8pt sin 0pt dx = Imbr2 3

(C.7e)

fl-b(IMB2 COS20pt + IMB 3 sin2_pt) dx = Imbr2
(C.7f)
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,IoLb(IMB2sin2_pt4-IMB3COS2_)pt)dx = Imbr3 (C.7g)

UsingthepreviousintegraldefinitionsalongwithEqs.(C.1),allowsusto evaluatethe

followingintegralsoverthebladespan:

f0Lb[IMB2sin2(,qG+ ¢) + IMB3COS2(t)G4-(_)]dx

: Imbr2sin2(0pc+ _) + Imbr3COS2(0pc+ ¢)+ Imbr23sin2(_pc+ _b)

foLb(IMB2-IMB3)COS(0G+ qS)sin(8 G + _)dx

= Imbr23 COS 2(_pc + qS) + (Imbr2 -- Imbr3 ) COS(Sp c + _) sin(0p c + ¢)

.t'Lb[IMB2 OOS2(_)G + _)+ IMB 3 sin2(t?G + _)] dx
*l0

: Imbr2 COS2(_pc + qS) + Imbr3 sin2(/)pc + _) _ Imbr23 sin 2({9pc + 0)

Making use of the above expressions, the following integrals appearing in Eqs. (C.6) can

be evaluated as:

Lbqlbx2 dx = [ly b COS(_pc 4- q_) - Izb sin(0pc 4- ¢)][(_g)2 _ _X,_ 4- _p_

+ [lyb sin(f)pc + q_)+ Izb COS0qpc + _5)][(_ -- f_)2)

- Jb(i)pc + ¢)

4- [(Imbr2 -- Imbr3 ) COS(0pc 4- qS) sin(0pc 4- fi_)
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4- Imbr23 COS 2(8pc + _)]_[(£_ + 2_) + 2(_pc + _)(_ + ,_p)]

+ 2[Imbr2 COs2(Opc + _) + Imbr3 sin2(Opc -I- _)

-- Imbr23 sin 2(Opc + _)]{_[(_)pc + _)_ -- _]

4- [Imbr2 sin2(Opc+ _) + Imbr 3 COS2(Opc + _)

+ Imbr23 sin 2(Opc + _)][2_,B + _,_ + (,B + _pX_2_ 4- _)] (c.8)

"bqlby2 dx = Mb_)2e[Yb sin(Opc + _)+ z b cos(Opc + _)]

_ [ly b COS(Op c + _)_ izb sin(Op c + _)][_2(# + #p)+ j_]_

+ [ly b sin(Opc + (_)+ Izb COS(Opc + _)][Q(_ + 2_)

_ (l_._2/_p + _)# + (_ + _2 + _# + #2) _ ____-_2(_2 + #2)]

+ [(Irnbr2 -- Imbr3 ) COS(Opc + _) sin(Opc + q_)

+ Imbr23 COS 2(Opc 4- _)][(_)2 _ _) _ 2(_p c + _)#]

Jr [Imbr2 COS2(Opc + ¢) Jr Imbr3 sin2(Opc + _)

-- Imbr23 sin 2(Opc + _5)[_ -- _)2(,8 + tip) -- 2(_)pc + _)(£_ + ¢)] (c.9)

0%qlbz2 dx = - Mbg)2e[y b Cos(Opc + _)-- Z b sin(Opc + _)]

+ [IV b COS(Opc + (_)-- Izb sin(Opc + _)][ -- _(Q + 2¢)+ (_ -- _2E
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1 2 2 _2+ (#_2 _ #)#p+ 2-_ (: + #2)_ (:: + + ## + #2)]

+ [ly b sin(_pc + _) + Izb COS(_pc + _)](_ -- _2X# +/_p)

- Jb(_pc + _X# + ,tip)

+ [(Imbr 2 -- Imbr3 ) COS(Spc + _)) sin(epc + _)

+ Imbr2 3 COS 2(8pc + _)][,_ -- 2(_pc + _X_ + _)]

- [Imbr2 sin2(epc + _)+ Imbr3 COS2(Opc + q_)

+ I=b_23si, 2(ep_+ ,_)][_ + 2(/_p_+ _,)#]

fOLbx Plbx2 dx = MbXb__2e + Ib_(_ + 2_) + Ib,/_p(,_ -- ,6_ 2)

(c.io)

+ Ib[(_:+ :2 + ## + #2)_ I 2..2-_-:_tg + #2)]

-- 2[ly b sin(Opc 4- (_)+ Izb coS(Opc + _)]_.)(O!o_v.- I- _)

fOLbx Plby2 = -- 4. 21bD-(s_: 4. ## 4- #/_p)
dx Ib(_) 2

(c.1_)

+ [lyb COS(Spc + _) -- Izb sin(Opc + _)][_Q(Q + 2_)

+ [lY b sin(/)P c + qS) + Izb COS(Spc + _)][([)pc + _)

+ 20# - 2_:)(_)pc + _)_]

foL'x PIbz2 dx = Ib(_: + _2 + _# + #2)#p _ ib _

(c.12)
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+ [ly b cos(Opc + _)- Izb sin(Opc + _)][_(,8 + ,8p)- (_pc + _))]

+ [lyb sin(Op c + _) + izb cos(Op c + _b)][(Sp c + _))2

- (_p(: + _)(/_ + ,Sp_] (C.13)

The integral definitions represented by Eqs. (C.4) and (C.7) have been used in evaluating

the previous integrals.

Substituting Eqs. (C.8)-(C.13) into Eqs. (C.6) yields the components of the moment

about the the blade root in the "2" system due to the inertial loads acting on the blade:

Mlbx2 = --Ib_--Ib(_ _2-_x_+_p)+ Ib(_+¢2+_+#2)

- 21b_(_E+ ## +/_#pX/_+ #p)

+ [lyb COS(Opc+ _) -- Izb sin(Opc + q_)][ -- _ -- (_pc + _))_

-- g)(_)- + 2_)(_ +/_p)- (_)pc+ _)2(_ + _p)]

+ [ly b sin(_pc + (_) + Izb COS(tgpcJr _)][(_ -- (_)2)_ 2()((_ -I- #,Bp + #,/_)

+ (b_c+ $)2__ (# +/_pX0pc+ $) - 29(# + #p)#

- Jb(_pc+ 6)

+ [(Imbr2 -- Imbr3) COS(Spc+ _) sin(Spc + #))

+ Imbr23 COS2(0pc + _)]Q[(_;_ + 2_) + 2(_pc + _X/_ + #p)]

+ 2[Imbr 2 COS2(Spc+ _) + Imbr3 sin2(_pc + _)
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- Imbr23sin2(Opc+ ¢)]_[(8pc+ _)__/_]

+ [Imbr2 sin2(_)pc + ¢) + Imbr3 COS2(_pc + q_)

+ Imbr23 sin 2(_pc + ¢)][2_/_ + (,8 + (/g + ,8pX£22¢ + _;)]

Mrby2 = MbXbQ2e(/Y + ,8p) + Mb_)2e[Yb sin(Op c + ¢) + Zb COS(Opc + _)]

+ Ib#+ Id_(r_+ 2_X#+ #p)- I_(;_"+ _2+ lj/_+ #2)_ 21d¢2+ #2X#+ #p

+ Id# - _2#X#+ #_)#p+ Id_; + _2+ ## + #2X#+ #p)

- [ly b cos(Opt + ¢) _ Izu sin(Sp c + ¢)][_:)2(# + #p)_ + #_

- (/)pc+ _')+ (# + #p_]

+ [lyb sin(Opc + ¢) + Izb COS(_pc 4- q_)][_-)(_). 4- 2_) -- (_)pc + _)2

- 2_(_)p_+ CX#+ #p)+ (/)pc+ CX#+ #p)¢]

- Jo(#pc+ _)¢

+ [(Imbr2 -- Imbr3 ) COS(Spc + _) sin(_?pc + _)

+ Ir_b_23cos 2(enc + ¢)][(_.Q2 _ _) _ 2U)pc + ¢)/}]

Jr- [Imbr2 COS2(Opc + (_)+ Imbr 3 sin2(_pc + _)

- Imbr23 sin 2(Opc + _t))][/j -- Q2(,8 +/tp)- 2(8pc + ¢)(_) + _)]

Mlbz2 = -- MbXb_()2e_ -- Mb_-_2e[Yb COS(epc + q_) -- Z b sin(t)pc + ¢)]

- Ib_+ %_(# + #p)#- I_(#- _2#)#p__ I_(_ + _2+ ## +/_2)

(C.14a)

(C.14b)
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Jr _--Ib_2_(_ 2 + _2)

+ [lyb COS(Opc + _)_ Izb sin(Op c + _)][(_ _ _Q2)_

+ (b_ + _)2+ _)(_ + _X_+ #p)]

+ [lyb sin(Opc + (_) + Izb CoS(Opc + _)][(_ -- _Q2X# + #p)

+ (ep_+ 6) + 2_k]

- Jb(/)pc + _)(# + #p)

+ [(Imbr2 -- Imbr3 ) CoS(Opc + _) sin(Opc + _)

+ Imbr23 COS 2(Opt + +)][,_ -- 2({)pc + _X _'] 4- _)]

- [Imbr2 sin2(Opc + _)+ Imbr3 cos2(Opc + q_)

+ Imbr2 3 sin 2(Opc + 6)][_ + 2(_)pc + _),6]
(C.14c)

C.1.2 Control Flap Inertial Loads

For lhe offset-hinged spring restrained blade model the differential force at the blade

root due to the inertial loads acting on the control surface can be expressed as

dFic = PlcdX

where-Pie represents the distributed inertial force acting on the control surface, which can

be expressed in the "2" system as

A A A

Plc= Plcx2 ex2 + Plcy2 ey2 + Plcz2 ez2

344



The x2, Y2 and z2 components of PJc for the spring restrained blade model are obtained

from the general expressions developed in Chapter 3 by substituting Eqs. (43) and (4.4) into

Eqs. (343).

The total force at the blade root is obtained by integrating the differential force along

the span of the control surface, i.e.

fXcs + LcsFjc = Ptc dx
"-c$

which can be expressed in the "2" system as

where

._, xcs + LosFlcx2 = Plcx2 dx
X6$

Flcy2

A A A

Fic = Flcx2 ex2 + Flcy 2 ey2 + Flcz2 ez2

= Mc(22(Xc + e) + 2McXcD _

+ 2McC2[y c sin(Opc + _ + ,J)+ zc cos(flpc + _ + 3)]_(Opc + ¢ + g)

+ 2Mc[)[Yh sin(OP c + ¢)+ Zh c°S(Opc + _)]Q(Opc + ¢)

Xcs + Lcs= Plcy2 dx
XC s

'" ¢ ;'.= 2Mcxc[2j_/3 p + McXc(sr[) 2 - _) + 2McXc-)(gs +/_/?)

- Mc[Y c cos(Opc + ¢ + 6) - zc sin(Opc + _ + 6)][[)([) + 2_)

+ (_pc+ _' + ,i_2+ 2_.(_p_+ _ + gX# +/_p_]

- Mc[Y c sin(Opc + _ + 5) + zc cos(Opc + 95+ _)][2£2/_

(c.15)

(C.16a)
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- Mc[Yhcos(_pc+ q_)- zh sin(Spc + 4))][_2(_ + 2_)

+ (_)pc + _)2 + 2_(_pc + _)(/_ +/_p)]

_ Mc[Y h sin(epc + _) + zh cos(Spc + _)][2_

Flcz2 =

+ (_)pc+ (_)- 2(;)(_)pc+ (_)_]

xcs+Los dxPlcz2
x:,

(C.16b)

= -- McXc_

+ McrY c cos(epc + _ + 6)- zc sin(E)pc + _ + _)][ - _

- (/_ + #p)_ - 2#_ + (_)pc+ _ + _)]

- Mc[Y c sin(Opc + _b+ 6) + zc cos(Spc + _ + 6)][(_)pc + _ + 3)2

- (/)pc+ '_+;_X#+ #p)_]

+ Mc[Yh COS(_pc + _) -- Zn sin(epc + _)][ - _(

- (# + #p)_- 2#C+ (/)pc+ $)]

_ Mc[Yh sin(Sp c + _) + Zh COS(Opc + _)][(bpc + _)2

- (epc+ ,_X#+ #p)_]

The following integral definitions

pressions:

have been used in evaluating

(C.16c)

the previous ex-
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f xcs + Lc'm c dx = M c (C.17a
X¢$

f xc" + LcsmcX dx = McX c
XC$

(C.17b)

fx,+ L:,mcXl c Cos 8pt dx = McY c (C.17c)
XCS

f xcs+ LcsmcXlc sin Opt dx = McZ c
XCS

(C.17d)

,i c'+ Lc'mcX H COS _gptdx = McY h (C.17e)
s

f xcs + Lc'mcX H sin 8pt dx = Mcz h
Xcs

(c.170

where M c represents the mass of one control surface.

For the offset-hinged spring restrained blade model the differential moment about the

blade root due to the inertial loads acting on the control surface can be expressed as

dM,c = [_.. + (x _x4+ _. _ys + _H_zS) × P,c] dx

where -qlh represenls the distributed inertial moment about the control surface hinge, which

can be expressed in |he "2" system as

A A A

qlh = qlhx2ex2 + qlhy2 ey2 + qlhz2 ez2

The x 2, Y2 and z2 components of qlh for the spring restrained blade model are obtained

from the general expressions developed in Chapter 3 by substituting Eqs. (4.3) and (4.4) into

Eqs. (3A6).

The total moment about the blade root is obtained by integrating the differential mo-

ment along the span of the control surface, i.e.
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rxcs+Lcs_ ^ A ^MIc= [qm+ (Xex4+ YHey5+ _Hez5)x-Plc]dx
J,

Xcs

(c.18)

which can be expressed in the "2" system as

_ A A. A

Mic = Mlcx2 ex2 + Mlcy2 ey2 + Mlcz2 ez2

where

xcs + LcsMlcx2 = qmx2 dx

--cs

Xcs+ Lcs4"- X H sin(0 G + gb) Plcy2 dx
XCS

Xc,+ ½s-- X H COS(0 G + _5) PlCZ2 dx

Xcs

Xcs+ Lcs ._.xcs + Lcs+ _ x Plcz2 dx - (_ +/_p) x Plcy2 dx
XC $ X¢$

(C.19a)

Mlcy 2 = f_i s+ Los Ix _¢s+ Lcs
qlhy2 dx -- XH sin(0G + q_) Plcx2 dx

• c$

f_i s + Los
-- _" XH COS(0G + q_) Plcz2 dx

,Xcs + Lcs- (/_ + Fp) XH sin(0G + £5) Plcz2 dx
_Xc$

Xcs+ Lcs f_cs + Lcs-- X Plcz2 dx + (/3 + j_p)
XCS S

x Plcx2 dx (C.19b)

cs+ Lcs _Xcs + LosMlcz2 = qlhz2 dx +
"'cs Xcs

XH COS(_)G + '/_) Plcx2 dx

._,xcs+ Los+ _ XH COS(0G + ¢) Plcy2 dx
XcS
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+ (,6 + ,_p)f_cs+s L¢, XH sin(_G + (_) Plcy2 dx

Xcs+ Los fxii' + Los+ x Plcy2 dx -- _ x Plcx2 dx
Xc s

(C.19c)

Before performing the above integrations it is convenient to define the following inte-

grals:

f xcs + LcsmcX2 dx = Ic (C.20a)
X(:S

"xcs+ LcsmcXicx Cos _pt dx = lyc
XCS

(C20b)

Xcs + LcsmcXlcX sin _pt dx = Izc (C20c)
,,J

Ac$

fxll s+ LC'mcXHX COS Opt dx = ly h (C.20d)

f xcS+ LcsmcXHx sin Opt dx = Izh
XCS

(C.20e)

xc' + LC'mcX2 dx = Jn (C.20f)
XCS

xcs + LcS(IMc 2 + IMC3) dx = Jc
Xcs

(C.20g)

l "xcS+Lc'(IMC2-1MC3) c°s/_ptsin0ptdx = Imcr23
Xcs

(C.20h)

xcs + Lcs(IMc 2 cos20pt + IMC 3 sin20pt) dx = Imcr2
XCS

(C20i)

,_,xcs + LcS(IMc 2 sin2_pt + IMC 3 COS20pt) dx = Imcr3
Xcs

(C.20j)
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xc'+Lc'mcX2HCOS2ept dx = Jyh
XES

(C20k)

xc'+ L_'mcX2 H sin2ept dx = Jzh (C.201)
Xc$

,r_i "+ LC'mcX2H sin 8pt cos 8pt dx = Jyzh (C.20m)

.J'xlc$+ Lc'mcXHXtc dx = Jhc (C.20n)
g

,r_i' + _'mcXHXlc cos2_pt dx = Jyhc (C.20o)

,j'x_I" + Lc'mcXHXlc sJn2_pt dx = Jzhc (C.20p)

,_,xc' + LcsmcXHXlc COS _pt sin Opt dx = Jyzl_c
Xcs

(C.20q)

Using the above integral definitions along with Eqs. (C.1) , the following integrals can

be evaluated:

xc'+ LC'EIMc 2 sin2(0G + 95 + 3) + IMC 3 COS2(0G + 95 + 6)'l dx
XCl

= Imcr2 sin2(epc + 95 + 6) + Imcr3 cos2(_pc + 95 + 6) + Imcr2 3 sin 2(0pc + _ + 6)

xc'+ Lc'(IMC 2 -- IMC3) COS({)G + 95 + 6) sin(0 G + 95 + 6)dx
XC$

= Imcr2 3 COS 2(epc + _ + 3) + (tmcr2 -- Imcr3) cos(0pc + 95 + 3) sin(/_pc + _ + 3)

x¢,+ LcS[IMc 2 COS2(0 G + 95 + 3)+ IMC 3 sin2(0G + d2 + (_)]
XCli

= Imcr2 COS2(Spc + (_ + 3) + Imcr3 sin2(/:)pc + _ + 6) -- Imcr2 3 sin 2(8pc + _ + (_)

350



f xcs + Lc' mc X H XEc cos(_ G 4- (_) cos(8 G -{- _) 4- 5) dx

Xcs

= Jyhc C°S(Spc + _) COS(0pc + q_ + 6) + Jznc sin(epc + _) sin(Spc + _ + 5)

- Jyznc sin(28pc + 2q_ + 3)

Iixcs +Lcs m c X H Xlc cos(_ G 4- #))sin(eG + ¢ + 5)dx
XCS

= Jyhc cos(_?pc + _5) sin(Spc + q5 + _) -- Jzhc sin(_pc + _) cos(epc + _ + _)

+ Jyzhc COS(28pc + 2q_ + 6)

f xcs + Lc' mc XH XIc sin(a G + _)) sin(t? G + _ + _) dx
Xcs

= Jyhc sin(t?pc + £5) sin(Dpc + _ + _) + Jzhc c°s(_epc + q_) cos(0pc + _ + _)

+ Jyznc sin(20pc + 2_ + 5)

f xcs+Lc'mcxH Xlc sin(0 G + qS)cos(0 G+¢ 4-&)dx

XCS

= Jyhc sin(Spc + _) cos(_]pc + q_ + c1) -- Jzhc cos(gp_ + q_) sin(epc + _ + _)

+ Jyzhc COS(20pc + 2£5 + _)

j xcs+Lc'mcx2 COS2(0G+ _5)dx

Xc s

= Jyn c°s2(tgpc + 6) + Jzh sin2(_pc + _)-- Jyzh sin 2(8pc + ¢)

J "xc_+ Lcs m c X2H sin2(0G + _)dx

XCS

= Jzh COS2(Opc+ q_) + Jyh sin2(Dpc 4- £6) + Jyzh sin 2(_)pc + _)
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x_, + _, X2H COS(_G + _) sin(eG + _) dxm c
XCS

= Jyzh COS 2(0pc + _) + (Jyh -- Jzh) COS(0pc + q_) sin(Spc + _)

Using the above integrals, the following integrals appearing in Eqs. (C.19) can be eval-

uated.

fx xcs+ LCSqlhx2 dx = Mlhx2
cs

= -- [Jyhc COS(Opc -I- _) sin(Opc + #_ + ¢_)+ Jyzhc c°s(20pc + 2@ + 6)

-- Jzhc sin(epc + _) c°S(0pc + _ + 3)]_(_ + 2()

- jhc[(/)pc+ $) cos_ + (e_ + ,_)2sin3]

+ [ly c cos(Spt + _ + 3)- Izc sin(_pt + _ + 3)],_

-- [lyc sin(_pc + #_ + 6)+ Izc cos(Spc + _ + 3)1[(_ -- _2)

- 2:_(_:+/_p +/_/_)]

-- Jc(_pc + _ + _)

+ [(Imcr2 - Imcr3) cos(epc + _ + 3) sin(epc + 4_ + 3)

-k Imcr23 cos 2(epc + q_ + 3)]_[(Q + 2_) + 2(0pc + _ + _X/_ +/_p)]

--k 2[Imcr2 cos2(Spc + q) -f- 3) + Imcr3 sin2(0pc + _ -k 3)

- Imcr23 sin 2(epc + _ + 3)]_[(_pc + _ + _)_ - ,_]

+ [Imcr2 sin2(0pc + _ + &) + Imcr3 cos2(@pc + _ + 3)
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+ linch23sin 2(8pc + q_+ &)][2_# + _ + (# + #pXQ2_ + _)]

xll + LC'qlhy 2 dx = Mly 2

= - 2[Jyhc sin(Spc + _) sin(Spc + _ + 6) + Jyzhc sin(28pc + 2_ + 3)

(C.21)

+ Jzhc COS(Spc + _) COS(Spc + _ + a)]Q(f)pc + _))

-- Mc_2e[Yc sin(Spc + _ + 6) + z c cos(Spc + q_ 4- 6)]

4- [lyc COS(Spc 4- _ 4- _) -- Izc sin(Spc + £5 + _)][_)2(/_ + ,/_p) + _]_

- [lyc sin(Spc + _ + 6) + Izc cos(Spc + _ + 6)]_(Q + 2¢)

- Jc(/%c+ +

4- [(Imcr2 -- Imcr3 ) COS(Spc + q_ 4- c_) sin(Opc + (5 + ,5)

+ Imcr2 3 COS 2(Opc + _ + 6)][(¢_;'_ 2 - _) - 2(f;)pc + _ + _)/_]

+ [Imcr2 cos2(_pc + _ + _S)+ Imcr3 sin2(Spc + 4) + 6)

- Imcr2 3 sin 2(8pc + q_ + &)][j - Q2(,8 + tip)

-- 2(Opc + _ + 5XE_ + _')]

f xcs dx -- Ulhz2

+
LcSqlhz 2

Xcs

= 2[Jyhc sin((/pc + _) cos(Spc + _ + ,5)+ Jyzhc cos(2epc + 2q_+ &)

(C.22)

- Jzhc COS(Spc + q_) sin(Spc + _ + 6)](_(Spc + _)

+ Mc_2e[Yc cos(Opc + _ + _)- z c sin(Spc + g5 + _)]
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+ [Iy c COS(ep c + _ + _)-- Izc sin(gpc + _ + _)]_(_ + 2_)

- [Iyc sin(e_ + (I)+ _) + IzccoS(ep_+ _ + (_)](_- _Q2X/_+/_p)

-- Jc(_pc + _)+ _X/_ + _p)

+ [(Imcr 2 -- Imcr3)COS(_pc + @ + (S)sin(Opc + q_ + (_)

+ Imcr23 COS 2(_)pc + _ + _)][,_ -- 2(_pc + (_ + _X Cz + _)]

-- [Imcr2 sin2(epc + _ + _) + Imrc3 cos2(_pc + (_ + _)

+ Imcr2 3 sin 2(epc + q_ + 6)][_ + 2((_pc + _ + _)/_] (C.23)

,+ L=, XH sin(0G + _)) Plcy2 dx

= [ly h sin(epc + _) + Izh COS(epc + _)][2(_,_p + (C{)2 -- _)]

-- [Jyhc sin(_pc + _) c°S(Spc + q_ + 6) -- Jzhc COS(Spc + q_) sin(epc + q_ + (_)

+ Jyzhc cos(28pc + 2_b + 6)](Spc + _) + _)2

- [Jyhc sin(/)pc + _) sin(E)pc + _ + (_) + Jzhc c°s(E)pc + _) C°S(Spc + V$ + (_)

+ Jyzhc sin(28pc + 2('p + S)](Opc + _ + _)

1 j
-- [Jyzh COS 2(_)pc+ _) + _ yh -- Jzh) sin 2(Opc + _)][(Opc + _)2

+ (2(_ + 2C)+ 2(;_((_pc+ _X/_ +/_p)]

+ [Jzh COS2(_pc + @) + Jyh sin2(_pc + _)

+ Jyzh sin 2(8pc + _)][(Opc + _) + 2_/_ - 2_(Opc + _))C] (C.24)
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f×i_" COS(_)G+ g_)Plcz2dx= - [lyhcos(E)pc+ _)- Izl_sin(epc + _)]_

+
LcsXH

s

+ [Jy_c c°S(Spc + q_)cos(Spc + _b+ _) + Jzhcsin(epc + _) sin(epc + _ + &)

- Jyzhc sin(28pc + 2_ + &)](_)pc + _ + _)

-- [Jyhc cos(Spc + q_) sin(Spc + _ + &)- Jzhc sin(Spc + _) cos(Spc + _ + &)

+ Jyzhc COS(2epc + 2q_ + &)](/)pc + _ + _)2

+ rJyh COS2(_pc + qS) + Jzh sin2(_)pc + _)

- Jyzh sin 2(epc + _)][(_)pc + _)- (/_+ flp)_ -- 2/_ -- _(]

- [(Jyh -- Jzh) COS(Spc + _b) sin(Spc + q_)

+ Jyzh COS 2(8pc + _)]l-(t)pc + _)2 _ (_pc + _Xfl +/_p)_] ,

x¢, + L=,XH sin(0G + _) Ptcz2 dx = - [ly h sin(Spc + _) + Izhcos(Spc + _)]fl
XCS

+ [Jyhc sin(Spc + _) cos(Spc + _ + 6) - JzhcCOS(Spc+ _) sin(Spc + _ + 5)

+ Jyzhc c°s(2Opc + 2_ + c_)](#pc + _) + _)

-- l'Jyhc sin(0pc + _) sin(0pc + _ 4- S) + Jzhc c°S(Spc + _) cos(epc + q_ + 5)

+ Jyzhc sin(28pc + 2c_ + #)](#pc + _ + _)2

+ [(Jyh -- Jzh) c°S(Spc + _) sin(_pc + _)

+ Jyzh cos 2(8pc + q_)][(_)pc + _)- (/_ +/tp)_ -- 2/_ -- _']

-- rJzh cos2(Spc + q_) + Jyh sin2(/?pc + _)

(C.25)
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+ Jyzh sin 2(epc + q_)][({)pc + _))2 _ (_pc + _)X_ + _p)_] (C.26)

X H COS(_IG Jr _)) Plcy2 dx

= [ly h cos(epc + _b) - Izh sin(epc + _b)][29/_p + (_Q2 _ _)]

-- [Jyhc COS(epc + q_) COS(_Pc + (_ + (_) + Jzhc sin(_)pc + _) sin(Spc + _ + (_)

-- Jyzhc sin(28pc + 2_) + (_)](E)pc + _ + _)2

-- [Jyhc c°S(Spc + _) sin(epc + _ + &) - Jzhc sin(Spc + _) c°S(DPC + q_+ _)

+ Jyzh_cos(2e_ + 2_ + _)](_)pc+ _ + _)

-- [Jyh COS2(epc + _) + Jzh sin2(0pc + 95)

-- Jyzh sin 2(_)pc + _)][(i)pc + _)2 + _(_ + 2_) + 2£_(_)pc + _)(/3 + #p)]

-- [(Jyh -- Jzn) c°s(_gpc + q_) sin(0pc + 95)

+ Jvzh cos 2(epc + _)][(_)pc + _) + 2_# -- 2_;:2(t)pc+ 6)_]

._x_, + L:, XH sin(_?G + _5) Plcx2 dx = Mc[Y h sin(epc + _) + zn cos(epc + q_)] E)2e
X¢$

+ [ly n sin(#p c + q_) + Izn cos(Spc + _)]E)(_) + 2_)

+ 2[Jyhc sin(t?pc + 95) sin(Spc + d_+ S) + Jzhc C°S(t?pc + q_)c°S(epc + #) + 8)

+ Jyzhc sin(2_?pc + 2_ + S)]_)(#pc + _ + _)

+ 2[Jzh cos2(0pc + _5)+ Jyh sin2(epc + _)

+ Jyzh sin 2(E)pc+ _)]_(0pc + _)

(C27)

(C.28)
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_xlcs+ LosXH COS(f)G 4- (_) PlCX2dx = Mc[Y h coS(epc + _) - Zh sin(ep c + _)]Q2 e
$

+ rlyh COS(_?pc+ _)-- Izh sin(epc + ¢)]_)(_ + 2_)

+ 2[Jy hc c°S(epc + _) sin(Spc + _ + _)- Jzhc sin(0pc + _) cos(Spc + _ + _)

+ Jyzhc cos(28pc + 2¢ + 3)]£_(_)pc + _ + 6)

+ 2[(Jyh -- Jzh)cos(Spc + q_)sin(l_pc + q_)

+ Jy_hcos 2((_c+ ¢)]Q(bpc + ¢)

f xcs+ kc'x PlCX2dx = McXc_2e + Ic_(_ + 2_)
XC$

(C.29)

+ 2[ly c sin(Opc + q_+ _) + lzc cos(f)pc + _ + 6)]_(_)pc + _ + _)

+ 2[ly n sin(SP c + q_)+ Izh COS(Spc+ _)]()(_)pc 4- _)

Xcs+LcsxPlcy2dX = Ic(::) 2-_)+21c:)(: :+fl_+flfip)
XCS

(c30)

-- [ly c cos(Spc + q_+ 5) - Izc sin(Spc + q_+ 6)][.Q(_ + 2_)

+ (#pc+ _ + _)2+ p.(/_p_+ ¢ + ,sXfl+ #p]

- [lyc sin(Spc + ¢ + 5) + Izc cos(Opt + _ + 5)][(_pc + _ + 5)

+ 2£_/J - 2g_(_lpc + _ + 6)_]

- [lyh cos(Opc + ¢) - Izh sin(Opc + ¢)][Q(.Q + 2_)

+ (°pc+ ¢)2 + _(ap_ + CXfi + flp)]
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- [lyh sin(_?pc + (_) + Izh COS(Spc + _)][(I)pc + (_)

+ 2_,8 - 2Q(_)pc + (_)_] (C.31)

Xcs + Losx -----Plcz2 dx - Ic_
_" XCS

-- [ly c COS(E)pc + _ + _) -- Izc sin(Opc + _5 + 6)][_(,8 + _Sp) - (_pc + _ + ;_)]

-- [lyc sin(_pc + _ + _) + Izc cos(Opc + _ + _)][(_)l:)c + @+ _)2

-- (_pc Jr _ Jr _X_ 4- ,/_p)_]

- [ly h cos(epc + _) - Izh sin(/?pc + _)][_(,8 + #p) - (_)pc + _)]

-- [lyn sin(E)pc + _) + Izh coS(_pc + _)][(_)pc + (_)2

-- (Spc + _X# +/_p)_] (C32)

Explicit expressions for the x2, Y2 and z2 components of Mic are obtained by substituting

Eqs. (C.21) - (C.32) into Eqs. (C.19).

C.2 GRAVITATIONAL ROOT LOADS

The blade gravitational loads at the blade root are obtained by integrating the distrib-

uted gravitational loads along the span of the blade. The gravitational root loads are de-

veloped in the "2" system in which system the distributed gravity loads were developed in

Chapter 3. The gravitational root moment is then transformed to the "3" system in which

the equations of motion are formulated.
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C.2.1 Blade Gravity Loads

For the offset-hinged spring restrained blade model the differential force at the blade

root due to the gravitational loads acting on the blade can be expressed as

dFGb= PGbdx

where PGb represents lhe distributed gravitational force acting on the blade, which can be

expressed in the "2" system as

A A A

PGb = PGbx2 ex2 + PGby2 ey2 + PGbz2 ez2

The x 2, Y2 and z 2 components of ;Gb for the spring restrained blade model are obtained

by substituting Eqs. (4.3) and (4.4) into Eqs. (3.55).

The total force at the blade root is obtained by integrating the differential force along

the span of the blade, i.e.

_ Lb
FGb = PGb dx (C.33)

which can be expressed in the "2" system as

where

A _, A

FGb = FGbx2 ex2 + FGby2 ey2 + FGbz2 ez2

_0 Lb
FGbx2 = PGbx2 dx = - Mbg sin :zR cos _ (C.34a)

_0LbFOby2 = PGby2 dx = Mbg sin _R sin (C.34b)

FObz2 : PObz2 dx = - Mbg COS ;(R (C.34c)

where the integrals defined by Eqs. (C.4) have been used to evaluate the above ex-

pressions.
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Fortheoffset-hingedspringrestrainedblademodelthedifferentialmomentaboutthe

bladerootdueto thegravitationalloadsactingonthebladecanbeexpressedas

,k

dUGo= (q'G + ×ex, × PGO)dx

where qGb represents the distributed gravitational moment acting on the blade, which can

be expressed in the "2" system as

A A A

qGb ---- qGbx2 ex2 + qGby2 ey2 + qGbz2 ez2

The x 2, Y2 and z 2 components of qGb for the spring restrained blade model are obtained

by substituting Eqs. (4.3) and (4.4) into Eqs. (3.57).

The total moment about the blade root is obtained by integrating the differential mo-

ment along the span of the blade, i.e.

MGb = J0 (qGb + X ex4 × PGb) dx
(c.35)

which can be expressed in the "2" system as

', A A

MGb = MGbx2 ex2 + MGby 2 ey2 + MGbz2 ez2

where

/o-b I" Lb /i -b
MGbx2 ---- qGbx2 dx + ( x PGbz2 dx - {fi+ #p) X PGby2 dx

0
(C.36a)

fO Lb /0 Lb /0 Lb
MGby2 : qGby2 dx -- X PGbz2 dx + (# + #p) X PGbx2 dx (C.36b)

j0 .17 Mobz2 ---- qGbz2 dx + x PGby2 dx - ( PObx2 dx

The various integrals appearing in Eqs. (C36) can be evaluated as follows.

(C.36c)

b qGbx2 dx = - Mbg[y b COS(_)pc + _)) -- Zb sin(_pc + gS)][ cos _zR
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- (,8+ _p)_sin_Rsin_]

- Mbg[ybsin(Spc+ _)+ z b cos(_?pc + _)] sin c_R sin ¢ (C.37)

f0 Lb qGby2 dx = - Mbg[y b cos(_pc + q_) -- z b sin(_qpc + ¢)][ cos 0_R

-- (/_ + tip)sin :zR COS _]_

-- Mbg[y b sin(Spc + _)+ z b cos(_gpc + _)][(,8 +/3p) cos _R

+ sin czR cos _] (c.38)

f0 Lb qGbz2 dx = -- Mbg[y b sin(0pc + q_) + z b cos(/)pc + _)] sin _R sin

- Mbg[y b cos(0pc 4- _) -- z b sin(0pc + q_)] sin :zR(_"sin _ -- cos ¢) (C.39)

f0 Lb XPGbx 2 dx = - MbgX b sin :_R COS _ (C.40)

jlLb XPGby 2 dx = MbgX b sin 5[R sin (C.41)

j Lb XPGbz 2 dx = - MbgX b cos z R (C.42)

where the integral definitions represented by Eqs. (C.4) have been used to evaluate the

previous expressions.

Substituting Eqs. (C37)- (C.42) into Eqs. (C.36) yields:

UGbx2 : -- Mbg[y b COS(0pc 4- _) -- Zb sin(Dpc 4- _)][ cos _R

- (,8 + flp_ sin :zR sin _#]

- Mbg[y b sin(0pc + ,;_)+ z b cos(Spc + _)] sin :zR sin ¢

- MbgXb_ COS z R -- MbgXb(/_ + tip) sin z R sin (C.43a)
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MGby2= -- Mbg[y b COS(_pc 4- (_) -- Zb sin(_Ypc + _)][ cos ccR

--(/_4-/_p)sin ZR COS _]_

-- Mbg[y b sin(_pc + _) + z b COS(_)pc 4- _)][(,B + ,_p) cos 0cR

+ sin :_R Cos_]

+ MbgX b Cos :_R -- MbgXb(/_ + /_p) sin _R COS

MGbz2 = -- Mbg[y b COS(Spc + _) -- Zb sin(Spc + _)] sin :xR(_ sin _ -- cos t#)

-- Mbg[y b sin(epc + _) + z b cos(Opt + _)] sin :_R sin

+ MbgX b sin _R sin _ + MbgXb_ sin c_R cos

(C43b)

(C.43c)

C.2.2 Control Flap Gravity Loads

For the offset-hinged spring restrained blade model the differential force at the blade

root due to the gravitiational loads acting on the control surface can be expressed as

dFGc = PGc dx

where -PGc represents the distributed gravitational force acting on the control surface,

which can be expressed in the "2" system as

A A A

PGc = PGcx2 ex2 4- PGcy2 ey2 4- PGcz2 ez2

The x 2, Y2 and z 2 components of-PGc for the spring restrained blade model are obtained

by substituting Eqs. (4.3) and (4.4) into Eqs (3.61).

The total force at the blade root is obtained by integrating the differential force along

the span of the control surface, i.e.

FGc fxll s+ Lcs
= PGc dx (C.44)

which can be expressed in the "2" system as
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A A A

Foc = FGcx2 ex2 + FGcy2 ey2 + FGcz2 ez2

where

Xcs+ LcsFGcx2 = PGcx2 dx = -Mcg sin :zR cos
Xcl

cs+ LosFGcy2 = PGcy2 dx = Mcg sin =R sin _ (C.45b)
-c$

Xc=+ LcsFGcz2 = PGcz2 dx = -Mcg cos :(R (C.45C)
X¢ I

where the integrals defined by Eqs. (C.17) have been used to evaluate the integrals.

For the offset-hinged spring restrained blade model the differential moment about the

blade root due to the gravitational loads acting on the control surface can be expressed

as:

A A A

dMGc= [UGh+ (xex4+ ey5+ ezs)× PGc]dx

where -qGh represents the distributed gravitational moment about the control surface hinge,

which can be expressed in the "2" system as

A A A

"qGh = qGhx2 ex2 + qGhy2 ey2 + qGhz2 ez2

The x 2, Y2 and z 2 components of UGh for the spring restrained blade model are obtained

by substituting Eqs. (4.3) and (4.4) into Eqs. (3.63).

The total moment about the blade root is obtained by integrating the differential mo-

ment along the span of the control surface

r xCs+ Los /_ A AMGc = [UGh + (Xex4 + YH ey5 + ZH ezs) × -PGc] dx (C.46)
J_

which can be expressed in the "2" system as

(C.45a)

A A A

MGc = MGcx2 ex2 + MGcy2 ey2 + MGcz2 ez2
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where

'Xcs + LosMGcx2 = qGhx2 dx

Xcs

Sx_"+ Los
-- X H COS(0 G + (_)[(,G 4- /_p)_PGcy2 4- PGcz2"I dx

Xcs + Los4- XH sin(0G + _) PGcy2 dx
XCS

_'Xcs +Lcs I'Xcs + Los

4- xpGcz2(ix- +  ptJx xpGcy2dx
XCS CS

(C.47a)

fxll s + LosMGcy2 ---- qGhy2 dx

._,xcs + Lcs4- X H COS(D G 4- ¢)[(/_ 4- _p)PGcx2 -- PGcz2]_ dx

XES

Xcs + Lcs-- XH sin(/)G + q_)[(_ + /_p)PGcz2 + PGcx2] dx
XCS

Xcs+ Los f xcs + Lcs-- X PGcz2 dx + (_ + _p) X PGcx2 dx

XCS Xcs

(C.47b)

,_,xcs + LosMGcz2 = qGhz2dX

XCS

,_;cs + Lcs4- XH COS(0G + _X_PGcy2 4- PGcx2) dx
"'c$

fxll s + Lcs
+ (_ +/_p) XH sin(SG + _)PGcy2 dx

Xcs + Lcs _ xcs + Lcs4- X PGcy2 dx - _ x PGcx2 dx

XCS XC$

(C.47c)

The various integrals appearing in Eqs. (C.47) can be evaluated as follows:
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f xcs qGhx2 dx = MGhx2

+ Los

X¢ s

= Mcg[Y c cos(0pc + _ + _) - zc sin(Spc + _ + &)][ cos ctR

- (fl + flpX sin _tR sinai

+ Mcg[y c sin(epc + _ + &)+ zc cos(epc + t_ + 3)] sin ctR sin

f xcs qGhy2 dx = MGhy 2

+ Lcs

XCS

= Mcg[y c cos(0pc + _ + 3)-- z c sin(Opc+ _ + cS)][ cos =R

- (/_ +/_p) sin :_Rcos _]_

+ McgEy c sin(epc + q_+ 3) + zc cos(Spc + _ + 3)][(/_ +/_p) cos :t R

+ sin .x R cos _]

I xcs qGhz2dX = MGhrz 2

+ Lcs

• ' x cs

= Mcg[y c cos(Opc + _6+ c_)- zc sin(_pc + _ + c_)] sin _R(¢ sin _ -- cos _)

-I- Mcg[y c sin(epc + _ + ,_) + z c cos(Opc + t_ + c_)] sin ct R sin _J

fx_, XH COS(_G -t- _b) PGcx2 dx

+ Lcs

XCS

= - Mcg[y h cos(Spc + _)- zn sin(Spc + _)] sin _R COS

fx_,+ XH sin(0o + _) POcx2 dx

Los

°' Xcs

= - Mcg[y h sin(0pc + q_)+ zh cos(Opc + q_)] sin :_RCOSt_

f x_, XH COS(0G + _) PGcy2 dx

+ Los

XC$

(c.48)

(c.49)

(c.50)

(c.51)

(C.52)
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= Mcg[yhcos(Spc+ _) - zh sin(_pc + _)] sin _R sin

j'xx" XH sin(eG + g)) PGcy2 dx

+ L,

¢$

= Mcg[Yh sin(epc + 4) + zh cos(epc + 4)] sin _zR sin

ix,,+ XH COS(eG Jr (_) PGcz2

L¢I
dx

X¢$

= - Mcgl'y h coS(0pc + (_) - zh sin(epc + _)] cos _(R

_x¢= XH sin(SG + 4) PGcz2

+ Lc3
dx

XCS

= - Mcg[Yh sin(epc + 4) + Zh COS(epc+ _)] COS:(R

(c.53)

(C.54)

(c.ss)

(c.56)

¢'+ LC'X PGcx2dX = -- Mcgxc sin :(R sin _, (C.57)
s

f_i'+L"xPGcy2dX = Mcgxcsin:_Rsin_/ (C.58)

f_:'+Lc'xPGcz2dX = -McgxcCOS:< R (C.59)

The integral definitions represented by Eqs. (C.17) have been used to evaluate the above

integrals.

Substituting Eqs. (C.48) - (C59) into Eqs. (C.47) yields:

MGcx2 = Mcg[y c cos(Spc + g) + 5) - zc sin(E)pc + q_+ 3)][ cos _R

- (,/_Jr ,_p)_ sin :_Rsin _]

+ Mcg[y c sin(epc + _ + _) + zc cos(Spc + q_+ _)] sin _R sin

+ Mcg[y h cos(Spc + g)) - zh sin(Spc + _))][ - cos :_R

Jr (_ Jr _p)_ sin _xR sin _]
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+ Mcg[Y h sin(/?pc + @) + z h cos(/_pc + ¢)] sin _R sin

- Mcgxc_ cos _R -- Mcgxc(/Y + _p) sin _R sin (C.60a)

MGcy2 = Mcg[Yc COS(0pc + ¢ + _$) - Zc sin(0pc + q_ + _)][ cos 3_R

-(/I +/_p) sin "xR cos _](

+ Mcg[Yc sin(/]pc + (_ + _) + z c cos(0pc + _ + _)][(/_ + tip) cos _R

+ sin _R COS _]

-- Mcg[Y h cos(t)pc + q_) - Zh(_pc + _)][ -- COS 3[R

+ (/_ + /_p) sin :zR cos _]_

-- McgEy h sin(Dpe + _6) + z h cos(rgpc + _)][ - (/_ +/_p) cos cq_

- sin :zR cos _]

+ Mcgx c cos :_R -- Mcgxc(/1 +/_p) sin :_R COS

MGcz2 = Mcg[Y c sin(_qpc + £f_+ _$)+ z c coS(Spc + £_ + _)] sin _R sin

+ Mcg[y c cos(Spc + q_ + &)- z c sin(t_pc + _ + _)] sin _R(( sin _ -- cos _)

+ Mcg[y n cos(Opc + ¢)- z h sin(0pc + _)][_ sin :zR sin

(C.60b)

- sin :ZR COS _/_]

+ Mcg[y h sin(0pc + ¢) + z h cos(Opc + q_)](/_ +/_p) sin _R sin

+ Mcgx c sin _R sin _ + Mcgxc_ sin _R cos (C.60c)
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C.3 AERODYNAMIC ROOT LOADS

The total aerodynamic force and moment at the blade root are determined by integrat-

ing the distributed aerodynamic loads developed in Chapter 3 along the span of the blade.

The integrations are performed directly in the "5" system in which the distributed aero-

dynamic loads have been formulated. After obtaining the root loads, the aerodynamic

moment about the blade root is transformed to the "3" system, in which the equations of

motion are formulated.

C.3.1 Blade Aerodynamic Loads

For the offset-hinged spring restrained blade model the differential force at the blade

root due to the aerodynamic loads acting on the blade is given by

d-FAb = -gAb dx

where PAb represents the distributed aerodynamic force acting on the blade, which can be

expressed in the "5" system as

A A

PAb = PAby5 ey5 + PAbz5 ez5

The Y5 and z 5 components of PAb for the spring restrained blade model are obtained from

the expressions developed in Chapter 3 by substituting Eqs. (43) and (4.4) into Eqs.

(3.109)

The total force at the blade root is obtained by integrating the differential force along

the span of the blade, i.e.

_0 Lb_
FAb = PAb dx 1C.61)

which can be expressed in the "5" system as

A

FAb = FAby 5 ey 5 -t- FAbz5 ez5

368



Before integrating the aerodynamic loads along the span of the blade it is convenient

to define two sets of aerodynamic coefficients. The first set is associated with the inte-

gration of the aerodynamic lift and moment along the span of the blade; the second set is

associated with the integration of the aerodynamic drag. In the integration of the aero-

dynamic loads along the span of the blade a plethora of integrals involving the products

of various powers ofxandthe pretwist distribution of the bladeept(X )arise. A scheme for

consistently keeping track of the numerous integrals used in this derivation has been de-

vised. The following scheme is used to define a set of coefficients associated with the in-

tegration of the aerodynamic lift and moment along the span of the blade:

_0Lb Xn mAnm = PAaoCb RLM 0pt(X ) dx (C.62)

where RLM represents the reverse flow parameter defined in Chapter 3 which is associated

with the integration of the aerodynamic lift and moment along the span of the blade.

Similarly. the following scheme is used to define a set of coefficients associated with the

integration of the aerodynamic drag along the blade span:

B n = PAaoCb R o x n dx (C.63)

where RD represents the reverse flow parameter defined in Chapter 3 associated with the

integration of the aerodynamic drag along the span of the blade.

Using the scheme represented by Eq. (C.62) the following set of aerodynamic coeffi-

cients which arise in the integration of the aerodynamic lift and moment along the span of

the blade are defined as follows:

r0LbA00 = PAaoCb RLM dx

LbRLMA01 = PAaoCb Dpt(X )dx

(C.64a)

(C64b)

JlLbRLM t)2t(x) dx (C.64c)A02 = PAaoCb
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_r0 ,-b
A10 = PAaoCb RLM X dx

I2-.All = PAaoCb RLM X 0pt(X ) dx

L_

A12 = PAaoCbf ° RLM X 02t(X) dx

A20 --- PAaocbrLbRLM X2 dx
,/¢0

Lb

A21 --- PAaocbf O RLM X2 0pt(X )dX

J'o x2o t(x)A22 = PAaoCb RLM

,.[O-b X3A30 = PAaoCb RLM dx

-b X3A31 = PAaoCb RLM 0pt(X )dx

(C.64d)

(C.64e)

(C.64f)

(C.64g)

(C.64h)

(C.64i)

(C.64i)

(C.64k)

Similarly. using the scheme represented by Eqs. (C.63) the following set of aerodynamic

coefficients associated with the integration of the aerodynamic drag along the span of the

blade are defined as follows:

B 0 = PAaoCb R D dx (C.65a)

B 1 = pAaoCb R D x dx (C.65b)

f Lb 2 X
B 2 = PAaoCbJ 0 RDX d (C.65c)

= PAaoCbrLbRD X3 dxB3 (C.65d)
Jo
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Performing the integration for each component in Eq. (C.61) yields

FAby5 = PAby$ dx

( 1 ""

--+Cb!_le(8 _ + it X_lpc + iS)--_-(}._R)_e(Ipc + +)+ -_}._R) 2]

1 1 ' +Cb_-_(Sp c ++ _<XA- ycbXep_+ _X0+ f_p)- _)2

- _-_.>e<0.:+ +X/1+/So)+_Co(0o:+ +)_

+ (,;._-RX_+ _p)](#_R) cos

+c+<o<,<o,<++):_- +:o<oo:++xo°:++)-+,.<,=_o,:++)

- +_-)-%(0pc + <DX/:I+/Tp)](I_;/R) sin _,

- -_-{0_ + qsX/7 +/_pXl_!:;!R)2 cos + sin _,

+ [ -- -_(Opc + +X_ + _p_ + _(_ + _.)2](#_)R)2 cos21/_ }

+ A01 {[+cb(X A -- +CbXSpc + _)- +cb=Qe(Spc + _)-- -_(+;.<_R)Qe]

+t--}:o<o,:++=-'y:o<o,:++=- +,.<_==-¼oo<=_o°.++)

1 _')e(,8 + ,8p)+ +Cb/7](/_Q R ) cos2
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- lcbQ(/_ +/_p)](/IQR) sin

- _# + #pX_,_R)2cos_ _in_ - _# + #p)E(#_R)2cos2V,}

+ A02[ - lcb(Q + _'XMQR) cos _ + lCbQ_(#QR ) sin _]

1

+ __Cb_)(0pc+ _)_(/_+/_p)_ 4_}.flR)_)(0pc+ _)_2

- ½_e(0_ + (X_+#p_:+_%Q(0_ + _)_

1 1 c "
+ (;._R)Q(# +/_)_ + _XA - 3- bXOp_+ $)#

I cmQ(0pc + 6X0p c Jr _) + _-(,;.QR)Q(0pc 4- qS)##p8

+ ___(}.flR_(Dpc + _)#2 _ __}.QR)Q(0pc + q_)

I Qe(0pc + _))fl + _____Cb(0pc + _)_ + ()._)R)/_]2

1 3_;)(Op c 1+ [ - _o_ + _)_(# + #_)- + _X# + #p)_2_ -_epc + _)#_

Jr Q(# + #p)2_ -I- 1-_-_(0pc Jr _)_(# + ,Sp)_p

+ ¼_(O_c+ _)#2(#+ #p)_2_.(op_+ _X#+ #p)

+ #(# + #_)](_,_R) cos _,

I o
+ [ - _lfl(0_c + _X# + #_)_ - -_, pc + _)#](I,£_R) sin _,}
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__..__ _-._e_+_o_:+_-_o._

8

_ l(](fl + flp)](/15)R) cos

+ [ - _-_(/_ + flp)_- _-_](/_R)sin _}

+ A,,2 [ _ 1 " 8cb_;)(_ +-E%( - _-c_¢_ + pp)#]

1 0 -- _-£)2(0pc _)p(,,_ + ,/_p)_+ A20[--_ pc + qS)_ +qsXfl+flp)_+

1 -2
_(o_o+ q)#+ )-#]2

+ B ( cd° _'[ ,1__(;__)R)2
1 _.2 2_

0 ao _ -z --_sz e j

+ [ - ()._RX/_ + #p) -- e_:_](/_)R) cos t_ - eO(pOR) sin _9
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- _(#_R) 2 cos _ sin I_}

+ Bl(-_-o° ){ [ - _;_e(_ + _)- (Z_R)/7]

+ [ -- (_. + (_ -- ll_(p + pp)](/xQR) cos i_

+ [ _ (Q + _) _ __2__,&.1_2 + l')/I/Tp + 117}/72](/xl72 R) sin Vs}

+ B2(__oO)[_ ._(_ + (_)2 1 2 2 1 Q2/_2 1 "2_ yp. ; +/_/_p_2+ _- _ _ _E/1] (C.66a)

S0 -b
FAbz5 = PAbz5 dx

= Aoo{[----_-Cb(XA---_-Cb}(_)pc+_)---_-_)e(XA lc •- _- _Xep_+ _)

• 1 2 2 -_-(,;.£2R)_)e]+ lcb_e(epc + _) + y£_ e (epc + (_) -

+ (;le(Inc+ V$)- -_-(7.(;IR)+ -_-Cb(;l(/l+/Tp)](IsI]R)sin

1 .__(_ +/Tp_](Iz_R)2+ [-_ep=+ @)C2- cos2e

1 8
+ _-( pc + 4_X/_flR) 2 sin2_
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+ [(0pc+ _)_- _-(/_+/_p)](#_R)2cos_ sin_}

+ Ao1{1_)2e2+ [lcb(_)+ _)+ _)e(](gC_R)cos_

+ ( - lcb_ + _e)(l,_R)sin
8

1_2,()_R,2+ _-_ t/_- ) cos2_ + _-(#_)R) 2 sin2_ + _(#QR) 2 cos _ sin _}

+ Alo{[1%(Spc+ _)_- lxA(_)pc+ ¢)_ + 3%(_)pc+ _)_ + Qe(Spc+ _)_8

2

+ Q2e(Opc + _5)+ _{;.QR){}flflp+ -_ZQR)_}_ 2

2

+ [(_ + _)(8pc + _)_ - {)- + CXfi + tip) - l_](ll{_R)cos

+ [(_ + _X_pc+ _) + _(ep_z + _)_ - 2 _(# + %)_

-- Q(0pc + #/,)flfip - -_-_}fi2(_pc + ¢)- -_-/_](H_}R)sin ¢}

+ AI_ {(-_-Cb_ + _)es + _2e) + _(_) + _XI_QR) cos

+ [(_2 4- _)+ -2_1()_2S-- 5)_/_Pp-1Qfi2](tz_)R) sin e}
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1 2 2
- _2##p(0p_+ _)- -_ # (ep_+ _)- ½_#]

1 _2_2 _ _2/_p 1 2 2_+ A21[__(Q + _)2 + "2- - _ ____ ,/_ j

+ Bo(-_o° )[ - _(,;._RXlz_R)sin_- _(_+ _pXt, QR) 2 cos_ sinl_]

B,(____o )[ _ 1.(_, I_ 2_(/_)R)sin _ ]+

Cdo 1 " (C.66b)
- B2(-E-o_n#

where the aerodynamic coefficients defined by Eqs. (C.64) and (C.65) have been used to

evaluate the above expressions.

For the offset-hinged spring restrained blade model the differential moment about the

blade root due to the aerodynamic loads acting on the blade can be expressed as

.\

d_lAb = (qAb + X ex, x -PAb) dX

where qAb represents the distributed aerodynamic moment acting on the blade, which can

be expressed in the "5" system as

AAb = qAbx5 ex5

The x s component of qAb for the spring restrained blade model is obtained from the ex-

pression developed in Chapter 3 by substituting Eqs. (4.3) and (4.4) into Eq. (3.110).

The total moment about the blade root is obtained by integrating the differential mo-

ment along the span of the blade, i.e.

0 Lb '_
MAb = (qAb + Xex4 x PAb) dx (C.67)

which can be expressed in the "5" system as

_ A A

NAb = MAbx5 ex5 + MAby5 ey5 + MAbz5 ez5

376



where

_0 LbMAbx5 = qAbx5 dx

= AOO{[ _ __(}._R)_eXA_ 1 3 "2--_%(0pc + _)]

+ [--_(;.gR)XA_ + 81---CbE_(XA-- _---CbX_pc+ q_)

I _2eXA(_ + _p)- -_-Cb(XA --1%)/_](/_;)R)cos_P2

1 _ lcbXX A _ lcbX_pc + _)+ _eXA(Sp c + _)+ [ -- _-(X A

---_/-Q R)X A + -_-Cb_)(XA -- _-CbX_ + _p )

Cm o
+ Cb_)e(T)](fl_;)R ) sin

_o

1 XA(_ + _p)_(/.l()R)2 C0S2_,
2

+ [-_-XA(epc + _5) + _'-Cb(_o° )](I1_ R)2 sin2_

Cmo
+ [XA(_pc + _ + Cb('-_---_-o _ I__XA(# + _p)](p_2R)2 cos _ sin _}

+ Aol [_-cb()(XA - 41--%Xl,{)R)cosVJ+ ()eXA(I'(:)R)sin

+ _-XA(II_R) 2 sin2_ + XAL_(fl_R) 2 cos I_ sin _]

+ _2eXA(f)pc + (_)--_(/.£_R)_)XA -- _-_eXA/_
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_ co xA_¼co 

+ [ - ½xA(#+/;_)_+_2x_(0_c+__:- _-x_#{

Cmo
+ %g_(To K - -_-_XA( # +/;p)](,_R) cos _,

:,:. Cmo •

+ [XA(_:_+ _X0pc+ @)+ Cu(TK - _:_-XA(# +
'-'o

Cm o

-- 21---XA/_+ Cbg_(To )](_-:)R ) sin _}

+ All[_2eXA H- QXA_(H_R ) cos _ + XA(_ + _XH_R) sin _]

;. Cmo÷ ,,_oE½X_÷_×Op_÷_- ½x_+½co_÷_×To_

2 Cb_ _--a_-o ]

Jr A21_-XA_'_(_ + 2_) (C.68a)

_0 Lb
MAby 5 ----- -- X PAbz5 dx

: A10{[lcb(XA-- lcbX0pc + _)+ I'_e(XA lC -- _- bX0pc+ 6)

1 cb_e(0pc + _))_ _._1 2e2(0pc + _) + 2_(,;Z-)R)_.)e ]8

1X . 3 c -+ [ - _-cd_ + _Xop_+ _) + _- A(Opc+ _)_ - -_- _(0_ + _)_

-- _e(0pc + _)_ + _-(Z_R)_ + lf_e(l? + tip)+ lcb,_](,u_R ) cos
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-- f2e(0pc + _))H- -_-(_;._ R)- -_-Cb_(# + pp)](#f2R)sin

+ [-_(0pc + q_)C2 + _-(# + #p)_](#_R) 2 cos2_

- _-(0pc + @XI_R) 2sin2¢

+ [ - (Opc+ _)_ + _-(# + #p)](M_)R) 2 cos _ sin _}

I _22e2 [-_-Cb(Q + (_) + _2e_](/_R) cos _/+ A11{ - -_- -

+ (_-Cb_'2(_-- f2eX/_2R) sin

- _-_2(I, QR)2 c0s2¢ - _-(M_R) 2 sin2¢ - (_(#_f2R)2 cos VJsin _ }

I " °

+ {_(01x + _)##p + _-_2#2(0pc + _)+ _-#](_uQR)sin @}

" C_e_ _e) _((:_+ CXn_R)cos¢+ A2_{(- -_-CbC- _ _
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+ [ _ (_ + _) _ 1Q_22" + _/_/_p + 1_2](/_R) sin _}

1 _2_2-_
+ Q2/_p(0pc + 4)+ 2- /_ (_pc+ _)+ 1_/_]

+ A31[ _ _(Q + _)2 1 _)2L_2 1 2 2_- _- . + _2B/_ + y_/_ j

+ Bl(-_o° )[ 2_,;._RX#_R) sin _ + _(_ +/_p)(/l_R) 2 cos _ sin _]

+ B2(__oo )[__}._R)_ + 1_(/_ + _pX/_R)cos _ + I_(#_R)sin_]

B t Cdo _ 1 C_/_
+ 3,-_o% (C.68b)

_0 Lb
MAbz5 = X PAby5 dx

-- ¼%xoo + ++)

+ "_(,;.gR)(X A - lcbX{)pc + _)- lcb_.e(Spc + _)(t)pc + _)8

1

8

- l_)e(_)pc + _)(,6 + ,_p) + lcb(_pc + _)_8

+ (,;-_ RX,B +/_p)](/_R) cos
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1
_[)Cb(@pc+ _SX_ +/_p)](#_R) sin

8

1 0
- -_ pc + q_X/{ + _pX#_R)2 cos_ sinl_

1 e _(/_ +/_J](#_R) 2c0_2_}

+ All{[lcb(XA_ lcbX()pc + _)-- lcbQe(_l_ + _)-- _-(}._R)Qe]

1 _e(fl +/_p) + -_Cb_](p_R) cos2

1 CbE}(_ + _p)'l(p_R) sin
8

- _-(_ +/_pX_,QR) 2 cos _ sin _ - _-(/_ + _p)_(#_R) 2 cos2_ }

+ A12[ - lcb(_2 + _X#[)R) cos _ + lcb_((#_R)sin _]

+ A2o{[ - lcb(Spc + q5)2_ -- lcb(0pc + _(81_ + _)-- _(;-_RXSpc + _ )_

1 ()2e(Opc + ,(/))(/3+ flpk_ + lcbE_(Opc + (;b)_
2

1
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- "_-Cb()(_pc+ _)X_)pc+ _)-I--_-(;.QR)Q((_pc+ _))_p

+ 4__;._RX)(_pc+ _)_2_ ___(;._R)Q((_pc + _))

I
- -_-(2e(0pc+ @)# + --8-Cb(0pc+ @)_ + (;._2R)_]

+ [- _ep_ + _X_(#+

Jr _)-(_-I-_p)2 C Jr 21--Q(epc -I-(_)_(_ -I-_p)_p

I
+ -_-(;)(Spc+ _))#2(#+ #p)_ ____(gpc -I-q_X,8+ #p)

+/_(_ + _p)](M{_R)cos

--8-Cb(_pc -I-_)_

--_-Cb_')(_)pc+ _)+ -_-Cb()(Spc+ _)X_ + _p)_ - -_-_e_

+ _-(;._}R_#/_p+ _-(;.qRX)/_2 I . )
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- _-_(_ + _p)](M_R) cos

+ A3o[ + _5)_ + _X_ +/_p)_+ _p)_-_%c - _-_2(_pc _/_(#+

I "2

I _(%_+ ,I,)#+ y/; ]2

+ B 1(_o°) { [ - _(,;._) R)2 - _-('_2e2 ]

+ [ - (}-_)RX,_ +/_p)- e_)_](M_R) cos _ - e_;)(H_)R) sin

+ [ -- _2 - _(_ +/_p)2](F_:2R)2 cos2_ - _-(flE2R)2 sin2_

- _(id:)R) 2 cos _ sin _}

Cdo

+ B2(_-o ){[ -- ¢.)e(_'_ + ¢)-- (}._:)R)/_]

+ [ - (() + _)_ -/}(/7 +/_p)](/_).R) cos

+ [ _ (Q + _)_ _4.2sl _,2 + _:_/_/_p+ __)/_2](FE2R) sin ¢}

+ B3_-_o L( cd° )r _ .__.(_) 4- _)2 _ 1()2_22 + _,_p£-)24- -2-'"-102L_2 __./jl " 2] (C68c)

where the aerodynamic coefficients given by Eqs. (C.64) and (C.65) have been used in the

above expression.
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C.3.2 Control Flap Aerodynamic Loads

For the offset-hinged spring restrained blade model the differential force at the blade

root due to the additional aerodynamic loads produced by the control surface is given by

dFAc = -PAc dx

where PAc represents the contribution to the total distributed aerodynamic force acting on

the blade from the control surface, which can be expressed in the "5" system as

PAc ---- PAcy5 ey5 + PAcz5 ez5

The Y5 and z s components of PAc for the spring restrained blade model are obtained from

the expressions developed in Chapter 3 by substituting Eqs. (4.3) and (4.4) into Eqs.

(3.119).

The total force at the blade root can be obtained by integrating the differential force

along the span of the control surface, i.e.

i.xcs +Lcs

FAc = J PAc dx (C.70)
XCs

which can be expressed in the "5" system as

FAc : FAcy s ey5 + FAcz5 ez5

Before integrating the distributed aerodynamic loads along the span of the control sur-

face it is convenient to define two sets of aerodynamic coefficients. The first set is asso-

ciated with the integration of the aerodynamic lift and moment; the second is associated

with the integration of the aerodynamic drag. In the integration of the aerodynamic loads

along the span of the control surface a plethora of integrals consisting of products of vari-

ous powers of x and the pretwisl distribution Opt(X) arise. A scheme for consistently

tracking the numerous integrals associated with the derivalion has been devised. The

following scheme is used to assign coefficients to the various integrals which arise in the

integration of the additional aerodynamic lift and moment due to the control surface:
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fx cs + Los mCnm = PAaoCf x n f_pt(X) dx (C.71)
• cs

where Cf represents the aerodynamic correction factor defined in Chapter 3 associated

with the additional aerodynamic lift and moment due to the presence of an aerodynamic

surface predicted using two-dimensional quasi-steady aerodynamics.

Similarly, the following scheme is used to assign symbols to the various integrals as-

sociated with the integration of the additional aerodynamic drag acting on the blade due

to the presence of the control surface:

Dn -- PAao[ xc'+ Lcsxn dx (C.72)
• Xcs

The aerodynamic coefficients defined by Eqs. (C71) and (C.72) are substituted directly into

Eqs. (C.75) in order to obtain explicit expressions for the force at the blade root due to the

aerodynamic loads acting on the control surface.

Using the scheme defined by Eq. {C.71) the lollowing set of aerodynamic coefficients

which arise in the integration of the aerodynamic lift and moment along the span of the

control surface are defined as follows:

'Xcs + LosC00 : /,JAaoCI dx
• Xcs

'Xcs + LosCOl = pAaoCt t_pt(x)dx
XCS

'xcs4 Los 2C02 = pAaoCt t_p,_(x) dx
• Xcs

'Xcs + LosC10 = PAaoCf xdx

• Xcs

(cs+ LosCll : PAaoCf x ttpt(x) dx
• cs

(C.73a)

(C.73b)

(C.73c)

(C.73d)

(C.73e)
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c_2 = pAaoC,/_" + _'x 9_t(x)dx (C.730

=rxc_s=+
c20 = pAaoC! Lcsx2 dx (C.73g)

C21 = PAaoCf x 0pt(X )dx (C.73h)

fXcs 4'-
022 ----- PAaoCf LCSX2_)2t(X ) dx

x¢1=

(C.73i)

xc=+ L-C,X3C30 = PAaoCf dx

x,,
(C.73j)

xc, + I-_,X3C31 = PAaoCf _pt(X) dx
Xc$

(C.73k)

Similarly, the following set of aerodynamic coefficients which arise in the integration

of the aerodynamic drag along the span of the control surface are defined as follows:

DO PAaol "xc=+ Los= dx

Xc$

(C.74a)

D1 = PAao_X. + L. X dx (C.74b)
x¢,

D2 = PAao_XCs+ Legx2 dx
Xcl

(C.74c)

Xc=+ I._sX3D 3 = PAao dx

XCS

(C.74d)

Performing the integration of each component in Eqs. (C.70) yields

,_, xc= + LosFAcy5 = PAcy5 dx
X¢:$
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Tll . (}._ R)Cb_e(_o0 )&= Co0{[ - -_-(;._R)Cb(2C b + 3CcsX--_--o)_ -

+ -_;.QR)2Ccs]

+ [-(;.Q R)_o¢(-_-o°)_- _%_(%c + _)_

+ lcb(Cb + 2Ccs)_)(81_ + _ Xa_ - cDfie(_ +/]p)(-_o° )_

-- 81---Cb(2Cb+ 3ccsXl_ + PpX_ol )_ + ()-_R)Ccs(_ + _p)](M_;_R) cos

m 4 -

- _(2_R)Ccs(Spc + _)- (,;._).RXcb + %sX-_o° )_](#_R)sin

+ [ -- Cb( p + pp)_( a-_lo0 _ 4- 1---c2 cs(R,- + pp)2](#_R)2

.1.-

COS2_/

1 8
+ [ - yc_,( p_+ _X# + #p)

-- (C b + CcsX_ + _pX-_-o° )_](#(_R)2 cos _ sin i_}

T,4 4

+ C01 {[ - --' CbCcsQ(Spc + _) + -_-Cb(Cb + 2Ccs)Q(_-)_](/J_R) cos2 t.0 _O

- -_(}._R)Ccs](H(._R) sin

-- _-Ccs(_ + _pX#_)R) 2 cos _ sin _}

-- C02 41---CbCcs_(#_R) COS I_
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- (% + %_)_(/_+/_pX-_o°_ + %,,_(/_+/_p)](_QR) cos _k

+ [ - cb_(/_+/_pY;( _ - -.E%,(Op,:+ ,/,)_

-- (c b + Ccs)/_(_oO )62(/_R) sin _ }

1 Ccsg_(# + #pXU(_R) cos _ - 2Ccsi{(#_)R) sin _}2

+c_0_-_o__-co,_+_0__' -'_'-Ccs_(_)pc + _),_

• I "2
- (% ÷ %s)C_(-_o°),_+ _Cc_,_]

- C2_CcsL_ _

1 Doccs C_._u£_R)2 sin2_
2 do

- DlCcs_ Ca-_o°/_R) sin
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1D2Ccs_-_2Cdo
2 ao

FAcz5= PAcz5dx
XcS

= Coo{- $_( .T"_(.-QR)_o_
4 do

1 02, T4 1-_ _-Cb(2C b 3ccsX_ol )_+ [ - 7- b'_o " + +

+ 2%_e( :1° )& -- 12--(}.QR)Ccs](/LQR ) sin t_
d O

+ [lccs(Spc + _) + (c b + ccsX_o° )3](I,_)R) 2 sin2t#

+ [2Cb(_( )_ -- -_-Ccs(_ + _p)](/z_)R) 2 cos _ sin t_}

+ C01-_-Ccs(f_E)R) 2 sin21//

1 c2_, T4 _, __Cb(2Cb 3Ccs)_(__ol )5+ C_o{[- _- b -,To ,_ + +

+ 2CbQ2e(_o0 )_ -- 12--_,;.E)R)Ccs_) ]

+ [2co_;(_o°_ - ½%,-_._(_+ #p)](F,_R)co_

+ [2%_(_o°)_+ %_,,(_p_+ _)+ 2(%+ %_),,(_o°)6

- lccs/_](IL_;_R ) sin t# }

+ C11Ccs_)(iz.()R) sin

+ + + cs_-_ _ a o

(C.75a)
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C 1 _2
+ 21_"Ccs S)- (C.75b)

where the aerodynamic coefficients defined by Eqs. (C,73) and (C.74) have been used in

evaluating the above expressions.

For the offset-hinged spring restrained blade model the differential moment about the

blade root due to the additional aerodynamic loads acting on the blade due to the presence

of the control surface can be expressed as

= ( Ac+ x ×  A )dx

where qAc represents the contribution to the total distributed aerodynamic moment acting

on the blade from the control surface, which can be expressed in the "5" system as

A

qAc = qAcx5 ex,5

The x 5 component of qAc is obtained from the general expressions developed in Chapter

3 by subslituting Eqs. (4.3) and (4.4) into Eq. (3.120).

The total moment about the blade root is obtained by integrating the differential mo-

ment along the span of the control surface

fXcs + Los
MAc = j, (-qAc + xex4 ×-PAc) dx (C.76)

which can be expressed in the "5" system as

A /% ,%

MAc = MAcx, 5 ex5 + MAcyS eys + MAczsezs

where

Xcs + LcsMAcx5 = qAcx5 dx
X(:s

- f 1 2.. T18_
= c:00,y%_ze--E_-oo

T18 1 c 2
+ -_-o [_ - bE_

,]'17-;

--I- -_6 C2b(Cb -t- Ccsa)---_-oO

1 c 2 " 1
+ -E b_(s+ -_-(%+ c_)2Q(S-I(_R) cos
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a o

+ [ _ ycb_)e(__)6 _ ccsX_-o )6](/zQR ) sin

1 ,, TIO ,_

+ [½Cc_(X_- ¼c0X%_+ _)+ (%+ _sXX_- _-C_To _

1 2 14__(Cb + ,2, T4 ,_8 c_(%c + _) - c_) _-E2o_

2 Ccs(Cb +ccs)( )6 ](#£_R)2 sin2_

- lc2¢( T4 _S(I_;R) 2 cos _ sin _}
2 ao

+ Cm [_-Ccs(XA -- _-Cb) -- _-C2cs](/d:_R)2 sin2_

T18_1 2,: S 1 2¢.[- 1
_c_o ++ c_0_-o L_-Cb_ + _cb + Cc_)2_]

T 1 •

1 c2(_2e ( T4 _% 1 2 Ccs)g).(To)6 ]+[-Tb ,To ,_-Tcb(cb +

1 c2(:)_( aT4o_(HE)R) cos t#2

1 c2;-z T4 "_. __Cb)_)(_p c + _)+ [ -- _- bSt_-o/_' + Ccs(XA --

+ 2(% + CcsXXa - Cb)(-_( _ -- _-Ccsg)(_pc + (_)

2

+ Cll[Ccs(XA-- lcb)_:)- lc2cs(')](l,g:_R)sin
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+

1 ,,-.2,T10 _ 1 2 2
+ (Cb + CcsXXA -- --4-%_ _ [--_--o _' -- _-Ccs_ (epc + _)

- _-{c b + Ccs) sz [-_o )o - -_-Ccs(C b + cs ao _,J

1 lc _-_2 1 2 _2-
+ c2_[_-c_(x A- _- b_- - --Ec_ J

'xcs + LosMAcy5 = -- x PAcz5 dx

1 C2E_ T4 /
= c_0{3- b (_-o)_(_-R) cos _,

1 2, T4 ,; 1 2Cb_e(__o0)5yCb(2ce + 3CcsX--_-o )5 -+ L-_-Cbt-_-o)o- Tll .

+ -_-()._R)Ccs](/__R) sin

+ [ -. _-Ccs(0pc + q_) - (c b + Ccs_( )_](I_R) 2 sin2_

^ _, T10 ,_ 1
+ [ - ZCb£[--_-o )O + -_-Ccs(/_ +/_p)](I_QR) 2 cos t_ sin _}

1 2 .2
C11-_-Ccs(lZ_R) sm

1 2 .j. T4 ._- 1 3C0s)£2(_ol )_C2o{[_-c&.(-_-o )o - +--8-Cb(2C b

- 2Cb_2e(_oO )& + _-(;.()R)Ccs,) ]

+ I:- 2%_._(_o°_ + ½_c,_(_+ _p)](u_R)_o_

+[-2Cb_(-_o0 _- Ccs,,(_?pc + _ ) -- 2(Cb + Ccs).Q(--_-o0 )5

+ lCcs_]_rl_QR) sin _ }
2 "

(C.77a)
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-- C21Ccs_(HQR ) sin

- C31-_-Ccs_) 2
(C.77b)

Xcs +LcsMAcz5 = X PAcy5 dx
X($

: C10{[- -1 (}'_R)Cb(2cb + 3ccsX-_ffl _o -(}'_R)Cb'_e(--_o° )_

+ _/._ R)2Ccs]

T4 #pX_-o° _+ ¼%(% + 2Cc_)_(0p_+ 6X_o )_- %_e(# +

_4:}._R)Ccs(0p c + _)- (}._R)(c b + CcsX !I°_](gQR)ao sin

+ [ _ Cb(# + #p_(_6:___T_ + lc (R + --fip)2J(ll_R) 2 cos2_
2 CS P"_0

z

- (c b + ccsX_ + #pX_o° _](p.QR) 2 cos _11sin _}

+ C11 {[--_-CbCcsE)(0pc + _b)+ _-Cb(Cb + 2Ccs)£2( aT-_-4o_](#_R) cos _
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- _-(2_R)Ccs-l(#_R ) sin

_ _.__Ccs(/_l+/_pXI_QR) 2 cos _ sin _}

-- C12-_-CbCcs(_(FI_'_R) cos I_

__Cb(2Cb + " Tll • T10- 3Ccs)/_(---_-o )_ - (,;._)RXc b + Ccs)_(--_-o _

- c_e/_(_o° )_+ (;._R)c_J_]

+[-cb(#+ #p)¢(-_o°)_- c_(_o° )_- 2C_sQ(.p_+ _X#+ #p)

- (Cb + Ccs)_-)(# + #pX_o° )_ + Ccs#(# + #p)](H_R) cos

+ [ - cb_(#+ #p)_( )_- _-c_(ep_+ _)#

- (c b + Ccs)#(_o° )6](/IGOR) sin _}

+ C21{[- _-CDCcsD(bpc + _)+ _-Cb(Cb + 2ccs)g_( a_-)_ -- _-(}.g_R)Ccs_) ]

I

2 Ccs'Q(/_ +/_p)O,_R) cos _ - _-Ccs#(iz_)R ) sin _}

+_o_-_o_-co_ +_/_- 'c
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__ 1 "2
0

1
- C31_-Ccs_/_

1 D c C,-_/_£"jR)2sin2_
---2 1 cs do "

Cdo
-- D2Ccs_2--_-(/_R) sin

d 0

1 .O3CcsQ2 Cdo (C,77c)
2 ao

where the aerodynamic coefficients defined in Eqs. (C.73) and (C.74) have been used in the

above expressions.

The total aerodynamic moment about the control surface hinge is obtained by inte-

grating the distributed aerodynamic hinge moment

Xcs+ LosMA& ----- qAhx5 dx (C.78)

XCS

which yields:

MA_ = Ca-_o° c b + Ccs)2{[-_(Cb + Ccs)_)(epc + _)T1

T2
+ _-(c b + Ccs)_-_-o 5](tieR ) COS

+ [_-(Cb + CcsX_)pc + _X2T9 + T1)- l_2e(0pc + _)T12 - _2e T15_a°

1 {2Cb + 3Ccs Ta)_o6_ + __(;.E)R)T,2](/_£-)R) sin _16

1 T15.5](/_OR)2 sin2_
+ [ - 14_-(0PC+ _)T12 2 ao

1 - _T15_ + _(_ +/_p)t12](/_R) 2 cos _ sin _}+ [ -- -_(0pc + (_)_T12 a o
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(301, . Ccs)2[8___(Cb+ Ccs)_2Tl(P_2R) cos _ - 1QeT12(/_QR) sin _+ a-_-4,oCb+

- ¼TI2(PQR) 2 sin2_ - 2-_TI2(P{_R)2cos _ sin_ ]

+ a-_ocbClO" + Ccs)2{E 8..__(Cb + Ccs)_(_)pc + _X2T 9 + T1) _ ____12e(Sp c + (_)T12

-- _2 e_T15 6 - 1_6 2Cb + 3Ccs){_o6 _ + 4_,;.(:_R)_T12]

+ [__ 2_(Opc + (_)_T12 _ QC Tls 5 + 1Q(# + #p)T12](pgR)co s
d o

+ [ - -_(Opc + _X{2 + C)T12

-((2 + CTa)_o5_ + 41--/_T12](I,{_R) sin @}

C'1_ 2 1_)2eT12 l_)CT12(PQR) cos+ a-aT_o% + c_) E-

- _-(_2 + C)T12(_d;_-R)sin _]

C2o, 1_(_2 " 1_(_ 2_Ta)_oS_+ a-_o Cb+ Ccs)2[ -- + 2CX0pc + (_)T12 - +

+ 41----_T12]

1 C21
4 ao {cb Jr Ccs)2_)(_ ). 4- 2_)T12 (C,79)

where the aerodynamic coefficients defined by Eqs. (C.73) and (C.74) have been used to

evaluate the above expression.
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C.4 TOTAL ROOT LOADS

The resultant force and moment at the blade root is obtained by summing the contrib-

utions from the inertial, gravitational and aerodynamic loads acting on the blade and the

control flap

= + + + + + (c.8o 

Similarly, the total moment about the blade root is given by

Since the equations of motion are formulated in this study in the "3" system, it is nec-

essary to express t_ R in the "3" system, i.e.

', " _' (C.82)
_1R = MRx 3ex3+ MRy 3ey 34- MRz 3ez3

The inertial and gravitational root loads have been formulated in the "2" system and the

aerodynamic root loads have been formulated in the "5" system. Before the components

of the total root moment in the "3" system can be determined it is necessary to transform

the inertial, gravitational and aerodynamic root moments to the "3" system. This is ac-

complished using the coordinate transformations defined in Chapter 2.

After transforming the various components to the "3" system, the following expressions

are obtained

MRx 3 = Mlbx2 + Mlcx2 + MGbx2 + MGcx2 4- MAbx5 4- MAcx5

4- /{p(Ml_,z 2 4- Mlcz2) + _p MGbz2 4- MGcz2)

- (( MAby 5 -F MAcy 5)- /_(MAbz5 + MAcz5)

MRy 3 _ I'vliby 3 4- Mlcy 3 + MGby3 4- MGcy 3 + MAby3 4- MAcy3

F _(MAbx s + MAcx5)

MRz 3 _-- ÷ Mibz2 + Mlcz2 4- MGbz2 + MGcz2 4- MAbz5 4- MAcz5

(.C 83a)

(C 83b)
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-- ,Bp(Mlbx2 + Mlcx 2) - ,Sp(MGbx2 + MGcx2)

+/_(MAbx5 + MAcx5) -- ,B_(MAby 5 + MAcy5) (C83C)

C.5 HINGE MOMENT

The total moment about the control surface hinge axis, which is oriented parallel to the

elastic axis of the blade, is required later in this study in order to calculate the power re-

quired to drive the control surface. The total hinge moment about the hinge axis is ob-

tained by summing the contributions of the inertial, gravitational and aerodynamic loads.

The hinge moment is assumed to act about an axis parallel to the x4 axis. The tolal hinge

moment is given by

M_ = M_5 + MG3 + MA& (c.84)

where

MI5 = Mlhrx 2 + _Mlhry2 + (,_ +/_b)Mlhrz2 (c.85)

MG3 = MGhx2 + _MGhy2 + (/_ + _p)MGhz2 (c.86)
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